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Overview
I/ scRNA-Seq: an essential tool for biology

II/ Differential Expression with tradeSeq

III/ Improving cluster replicability withDune
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I/ Single cell RNA-Sequencing: 
an essential tool for biology

i/ A quick intro to scRNA-Seq technology

ii/ Datasets used for this presentation

iii/ Trajectory inference and Slingshot
3



I.i/ Single cell RNA-
Sequencing: an
essential tool for

biology
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Central Dogma of biology

https://translate.bio/rna-therapeutics/central-dogma-for-web-4-3/
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Frommicro-array to bulk RNA-
Seq

Data from PubMed taken on 11/10/2019
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Keyword Microarray RNA−Seq

• Sequencing the mRNAs
aims to capture gene
expression level,
mostly as a proxy for
protein levels

• RNA-Seq enables
whole transcriptomic
sequencing without a-
priori need for a
reference genome
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Bulk RNA - Seq Single–cell RNA - Seq

VS VS

Single-cell RNA-Seq
Unmixing the smoothie
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Recent explosion in scRNA-Seq

https://twitter.com/vallens/status/1113982015517282304
8

https://twitter.com/vallens/status/1113982015517282304


Data structure
Cell 1 Cell 2 Cell 3 … Cell n

Gene 1 0 28 25 … 2

Gene 2 0 3 8 … 36

Gene 3 5 0 0 … 0

… … … … … …

Gene G 12 8 0 … 11
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Common workflow

Quality
Control

Dimensionality 
reduction Clustering Trajectory 

Inference

Differential 
Expression

Count 
estimation
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I.ii/ Case studies and
example datasets
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• Number of cells

• Number of genes

• Low-dimensionality representation
colored by clusters

Dataset characteristics

Quality
Control

Dimensionality 
reduction Clustering

Count 
estimation
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Cell types
●
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●

Zygote

2cell−early

2cell−mid

2cell−late

4cell

8cell

16cell

Blast−early

Blast−mid

Blast−late

• Embryogenesis dataset
from Deng et al

• 258 cells and 13179 genes

• Dimensionality
reduction with PCA

• Clusters from the
original publication

Deng, Q., Ramsköld, D., Reinius, B., & Sandberg, R. (2014). Single-
cell RNA-seq reveals dynamic, random monoallelic gene 
expression in mammalian cells. Science. 
https://doi.org/10.1126/science.1245316 13



Bone marrow stem cells
• Bone-marrow stem
cells from the monocle
3 vignette

• 2660 cells and 3004 
genes

• Dimensionality
reduction with UMAP

• Clusters from the
original publicationLeland McInnes, John Healy, and James Melville.UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction.

ArXiv
, 2 2018.URL
http://arxiv.org/abs/1802.03426
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I.iii/ Trajectory
inference with
Slingshot
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• It is possible to distinguish
a trajectory in the reduced
space that tracks biological
development

• Trapnell et al. introduces
the concept of pseudotime
in 2014

Trapnell, C., Cacchiarelli, D., Grimsby, J.,
Pokharel, P., Li, S., Morse, M., … Rinn, J. L. 
(2014). The dynamics and regulators of cell
fate decisions are revealed by
pseudotemporal ordering of single cells. 
Nature Biotechnology, 32(4), 381–386. 
https://doi.org/10.1038/nbt.2859

16



●

●

●
● ●

●

●

●
●

●

●
●●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●
● ●●●

●

●

●●

●
●
●

●●

●

● ●
●●

●

●

●

● ●●
●

●
●

●

●

●
●

●

●

●
●

●
●

● ●
●

●

●
●●

●

●
●

●

●● ●● ●

●● ●
●

●

●●

●

●

●

●●

● ●
●

●

●●

● ●
●

●

●

●

●

●

●

●
●

●
●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
● ●

●●

Low dimensional
PCA, ICA, tSNE, UMAP, …

Clustered
SC3, Seurat, RSEC, …

Input Data

17



Highly stable
Uses cells, not clusters

Mostly congruent
across branches

Simultaneous Principal Curves
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Highly stable
Uses cells, not clusters

Mostly congruent
across branches

Computing pseudotimes

Kelly Street, Davide Risso, Russell B.Fletcher, Diya Das, John Ngai, Nir Yosef
,Elizabeth Purdom, and Sandrine Dudoit. Slingshot:cell lineage and pseudotime
inference for single-cell transcriptomics.
BMC Genomics
, 19(1):477, 12 2018.ISSN 1471-2164.doi:10.1186/s12864-018-4772-0.URL
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-018-4772-0
.
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Application to bone-marrow
➢ Finding developmental paths

Each cell has a pseudotime, which measure how far
along it is in the developmental process
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Application to bone-marrow
➢ Finding developmental paths

Each cell has a pseudotime, which measure how far
along it is in the developmental process
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II/ Differential Expression with
tradeSeq

i/ Motivation

ii/ Statistical framework

iii/ Results
22



II.i/ Motivation
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cluster-based DE is artificial
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Genes are now expressed in a
continuous manner (since 2014)

Differential Expression is
still cluster-based, i.e. 
discrete.
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Trajectory based Differential
Expression

Quality
Control

Dimensionality 
reduction Clustering Trajectory 

Inference

Differential 
Expression

Count 
estimation

Differential 
Expression
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Trajectory-based DE
We developed tradeSeq, an algorithm that leverages the
continuous nature of scRNA-Seq.

Ø Available as an R package on Bioconductor.

Ø Modular tool that work with any dimensionality reduction and
trajectory inference method.

26



II.ii/ Statistical
framework
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Data structure

! =

# = [#%, . . , #(] ⊂ (ℝ-)(

n cells per G genes

Pseudotimes for each cell

1 = [1%, . . , 1(] ⊂ [0: 1]-×( Lineage assignment weights
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!"# = %& '"#, )"

Statistical model

Negative-
binomial model
common for
RNASeq count
data

Sample and
gene-
specific
mean

Gene-specific
dispersion
parameter
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Statistical model

!"# = %#&" + log +# +,
-./

0
1"-(3#) 5-#

Can accommodate: Design matrix Different
sequencing depths

6"# = +7 !"#, 9"
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Statistical model
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Fitting the smoothers

!"# $% = '
()*

+
,( - ."#(

/"% = 0%1" + log 6% +'
#)*

7
!"#($%) :#%

We rely on recent implementations
for fitting smoothers in themgcv
package

Wood S.N., N. Pya and B. Saefken (2016) 
Smoothing parameter and model selection 
for general

smooth models (with discussion). Journal 
of the American Statistical Association

111:1548-1575. 32



Knots location
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Testing framework
!"# $% = '

()*

+
,( - ."#(

Testing null hypotheses of the form: /0: 23." = 0

Using theWald Statistics5" = 23 6." 237892
:* 6."32:3
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An investigation
tool
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Association test

Contrast matrix

!": $%&' = $%&)' *+, -.. / ≠ /′

$%2' $%3' $%4' … $%5'
1 -1 0 … 0

0 1 -1 … 0

0 0 1 … 0

… … … … …

0 0 0 … -1
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StartVsEndTest
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diffTest
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II.iii/ Results
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Simulation framework: dynverse

Wouter Saelens, Robrecht Cannoodt,
Helena Todorov, and Yvan
Saeys.Acomparisonofsingle-cell
trajectory inference methods.
NatureBiotechnology
, page 1, 4 2019.ISSN 1087-0156.doi:10.1038/
s41587-019-0071-9.URL
http://www.nature.com/articles/s41587
-019-0071-9
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Outperforms existing methods
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Outperforms existing methods
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Provides
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Provides unique insights
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Provides unique insights
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Perspectives for tradeSeq
Ø Possible to develop new tests, especially to look at speed or
acceleration of gene changes.

Ø Expand the framework to test lineage × condition interaction

Ø Publish the paper
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Lineage× condition
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III/ Improving cluster
replicability withDune

i/ Motivation

ii/ Datasets

iii/ Measuring replicability

iv/ Method

v/ Results 48



III.i/ Motivations
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Motivation

Quality
Control

Dimensionality 
reduction Clustering Trajectory 

Inference

Differential 
Expression

Count 
estimation
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Clustering in scRNA-Seq
Here, we talk about clustering of cells, not genes

Clustering is used to detect cell-types, i.e. cells with a distinct common
transcriptomic signature.

Many clustering methods are used in scRNA-Seq, ranging from direct
application of existing clustering methods to adaptation of those
methods for scRNA-Seq specific purposes. 
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Motivation

QC Dimensionality 
reduction Clustering

Count 
estimation

PCA
UMAP
t-SNE

ZINBWave
…

k-means
hierarchical

RSEC
SC3
…

And all those methods have parameters of their owns
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How to benchmark clustering?
The first and most common way is to compute agreement with a gold
standard, usually using the adjusted Rand Index (ARI)

!" !# … !% Sums
&" '"" '"# … '"% ("
&# '#" '## … '#% (#
… … … … … …
&) ')" ')# … ')% ()
Sums *" *# … *%

+,- =
∑0,2 345

6 −
∑0 84

6 ∑2 95
6

3
6

1
2× ∑0 84

6 +∑2 95
6 −

∑0 84
6 ∑2 95

6
3
6
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Replicability and reproducibility

Patil, P., Peng, R.D. & Leek,
J.T. A visual tool for defining
reproducibility and
replicability. Nat Hum
Behav 3, 650–652 (2019) 
doi:10.1038/s41562-019-0629-z54



III.ii/ Datasets
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Cells Nuclei

10x

Smart-Seq

Mouse Brain: 4 platforms
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Pancreas data from Baron et al.

Baron, M., Veres, A., Wolock, S. L., Faust, A. L., Gaujoux,
R., Vetere, A., … Yanai, I. (2016). A Single-Cell
Transcriptomic Map of the Human and Mouse
Pancreas Reveals Inter- and Intra-cell Population
Structure. Cell Systems, 3(4), 346-360.e4. 
https://doi.org/10.1016/j.cels.2016.08.011

• 8569 cells and 5124 
genes

• Dimensionality
reduction with
zinbWave + t-SNE

• Clusters from the
original
publication
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Pancreas data from Segerstople et al.

Segerstolpe, Å., Palasantza, A., Eliasson, P., Andersson, E. 
M., Andréasson, A. C., Sun, X., … Sandberg, R. (2016). 
Single-Cell Transcriptome Profiling of Human Pancreatic
Islets in Health and Type 2 Diabetes. Cell Metabolism,
24(4), 593–607. https://doi.org/10.1016/j.cmet.2016.08.020

• 2136 cells and 7764 
genes

• Dimensionality
reduction with
zinbWave + t-SNE

• Clusters from the
original
publication
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III.iii/ Measuring
replicability
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Clustering is highly sensitive to analysis choices
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Clustering is highly sensitive to analysis choices
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Monocle ran on the
same dataset while
changing one
parameter

Clustering is highly sensitive to analysis choices
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Measuring replicability with MetaNeighbour

For example, we compare
how the output from
“running ZINB-Wave + 
Monocle with ! = 45”

replicates over two datasets

Crow, M., Paul, A., Ballouz, S., Huang, Z. J.,
& Gillis, J. (2018). Characterizing the
replicability of cell types defined by
single cell RNA-sequencing data using
MetaNeighbor. Nature
Communications, 9(1), 884. 
https://doi.org/10.1038/s41467-018-
03282-0 63



Crow, M., Paul, A., Ballouz, S., Huang, Z. J.,
& Gillis, J. (2018). Characterizing the
replicability of cell types defined by
single cell RNA-sequencing data using
MetaNeighbor. Nature
Communications, 9(1), 884. 
https://doi.org/10.1038/s41467-018-
03282-0

Measuring replicability with MetaNeighbour
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Crow, M., Paul, A., Ballouz, S., Huang, Z. 
J., & Gillis, J. (2018). Characterizing
the replicability of cell types
defined by single cell RNA-
sequencing data using
MetaNeighbor. Nature
Communications, 9(1), 884. 
https://doi.org/10.1038/s41467-018-
03282-0

Supervised Metaneighbour: cluster labels are shared among 
datasets

Supervised Metaneighbour
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Crow, M., Paul, A., Ballouz, S., Huang, Z. J.,
& Gillis, J. (2018). Characterizing the
replicability of cell types defined by
single cell RNA-sequencing data using
MetaNeighbor. Nature
Communications, 9(1), 884. 
https://doi.org/10.1038/s41467-018-
03282-0

• Greedy approach: look at every pair of clusters, score
each cluster by howwell it predict the other

• Define the AUROC for a pair of clusters by the minimum
of the two AUROC

• A cluster is replicable if AUROC > cutoff

Metaneighbour classify a pair of clusters are
replicable if each cluster of the pair is well predictive
of the other, andmore predictive than any other
cluster.

Unsupervised Metaneighbour
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Resolution- Replicability trade-off
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Pairwise merging to improve the ARI
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Pairwise merging to improve the ARI
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• Look at every pair of clusters
over all cluster labels (or
partitions)

• Merge the pair and recompute
the mean ARI

• Find the pair where this
improves the mean ARI the
most

• Actually merge that pair
• Iterate

• Stop when you cannot improve
the ARI anymore
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Dune improves mean ARI
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Dune improves mean ARI
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10.55 0.68
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0.680.58 1
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Dune improves mean ARI
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Other methods of merging
1) Build a hierarchy on the clusters based on a distance metric and linkage. 

Here we picked Euclidian distance in the reduced space for the cluster

medoids and complete linkage, as implemented in RSEC.

2) Merge along the tree:

1) Either merge clusters where%"# $%&%' < )*+,-- DE

2) Or cut tree at various heights ./'+0&)%12345674 < )*+,-- Dist
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III.v/ Results
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ARI with gold standard
On the Brain Smart-Seq cell
dataset, we run SC3 with
! = 0 and then merged
with the three methods

Note that

- Dune is merging using
Monocle and Seurat.

- We useDune’s stopping
point to stop the other
methods
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ARI with gold standard

77

Method 
of 

merging
AUARIC Scaled

AUARIC

DE 6.23 -0.41

Dist 6.28 -0.72

Dune 7.02 1.14

• Compute the AUARIC
• With a different
parameter or different
clustering method or
different dataset, the
stopping point will vary

->We scale the AUARIC
values
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ARI with gold standard



Replicability over pairs of datasets
On the Brain Smart-Seq cell dataset,
we run Seuratwith ! = 1.2 and then
merged with the three methods

Note that

- Dune is merging usingMonocle
and SC3.

- We useDune’s stopping point to
stop the other methods
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Replicability over pairs of datasets
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Introduce some regularization?
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Thank to all of you
for listening

Questions?
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