Ph. D. Qualifying Examination

Committee:
Elizabeth Purdom (chair)
Sandrine Dudoit John Ngai
Maya Petersen

Hector Roux de Bézieux
Group in Biostatistics
Sandrine Dudoit's lab
GitHub: HectorRDB
Website: http: //hectorrdb. github. io

Overview I/ scRNA-Seq: an essential tool for biology

II/ Differential Expression with tradeSeq

III/ Improving cluster replicability with Dune

I/ Single cell RNA-Sequencing: an essential tool for biology
i/ A quick intro to scRNA-Seq technology
ii/ Datasets used for this presentation
iii/ Trajectory inference and Slingshot

I. i/ Single cell RNA-

Sequencing: an essential tool for biology

Central Dogma of biology

From micro-array to bulk RNA-

Seq

Keyword Microarray \quad RNA-Seq

- Sequencing the mRNAs aims to capture gene expression level, mostly as a proxy for protein levels
- RNA-Seq enables whole transcriptomic sequencing without $a-$ priori need for a reference genome

Single-cell RNA-Seq

Unmixing the smoothie

Recent explosion in scRNA-Seq

Data structure

	Cell 1	Cell 2	Cell 3	\ldots	Cell n
Gene 1	0	28	25	\ldots	2
Gene 2	0	3	8	\ldots	36
Gene 3	5	0	0	\ldots	0
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
Gene G	12	8	0	\ldots	11

Common workflow

I. ii/ Case studies and example datasets

Dataset characteristics

- Number of cells
- Number of genes

- Low-dimensionality representation colored by clusters

Embryogenesis

- Embryogenesis dataset from Deng et al
- 258 cells and 13179 genes
- Dimensionality reduction with PCA
- Clusters from the original publication

Deng, Q., Ramsköld, D., Reinius, B., \& Sandberg, R. (2014). Singlecell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science.

Bone marrow stem cells

Leland McInnes，John Healy，and James Melville．UMAP：Uniform Manifold Approximation and Projection for Dimension Reduction ArXiv

$$
\text { , } 2 \text { 2018. URL }
$$

$$
\text { http: //arxiv. org/abs/1802. } 03426
$$

－Bone－marrow stem cells from the monocle 3 vignette
－ 2660 cells and 3004 genes
－Dimensionality reduction with UMAP
－Clusters from the original publication

I. iii/ Trajectory inference with Slingshot

Motivation

- It is possible to distinguish a trajectory in the reduced space that tracks biological development
- Trapnell et al. introduces the concept of pseudotime in 2014

Input Data

SC3, Seurat, RSEC, ...

Simultaneous Principal Curves

Highly stable
Uses cells, not clusters
Mostly congruent
across branches

Computing pseudotimes

Highly stable
Uses cells, not clusters
Mostly congruent across branches

Kelly Street, Davide Risso, Russell B. Fletcher, Diya Das, John Ngai, Nir Yosef ,Elizabeth Purdom, and Sandrine Dudoit. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics

Application to bone-marrow

Application to bone-marrow

$>$ Finding developmental paths
Each cell has a pseudotime, which measure how far along it is in the developmental process

II/ Differential Expression with tradeSeq
i/ Motivation
ii/ Statistical framework
iii/ Results

II. i/ Motivation

cluster-based DE is artificial

Genes are now expressed in a continuous manner (since 2014)

Trajectory based Differential Expression

Trajectory-based DE

We developed tradeSeq, an algorithm that leverages the continuous nature of scRNA-Seq.
> Available as an \mathbf{R} package on Bioconductor.
> Modular tool that work with any dimensionality reduction and trajectory inference method.

II. ii/ Statistical framework

Data structure

$$
T=\left[T_{0}, \ldots, T_{n}\right] \subset\left(\mathbb{R}^{L}\right)^{n}
$$

Pseudotimes for each cell

$Z=\left[Z_{0}, \ldots, Z_{n}\right] \subset[0: 1]^{L \times n} \quad$ Lineage assignment weights

Statistical model

Negative-
binomial model common for RNASeq count data

Sample and Gene-specific genespecific mean dispersion parameter

Statistical model

$$
\begin{gathered}
\left.Y_{g i}=N B\left(\mu_{g i}\right) \phi_{g}\right) \\
\mu_{g i}=U_{i} g_{g}+\log \left(N_{i}\right)+\sum_{l=1}^{L} s_{g l}\left(T_{i}\right) Z_{l i} \\
\text { Can accommodate: } \quad \text { Design matrix } \quad \text { Different }
\end{gathered}
$$

sequencing depths

Statistical model

Fitting the smoothers

$$
\begin{aligned}
& \mu_{g i}=\boldsymbol{U}_{i} \alpha_{g}+\log \left(N_{i}\right)+\sum_{l=1}^{L} s_{g l}\left(T_{i}\right) Z_{l i} \\
& s_{g l}\left(T_{i}\right)= \sum_{k=1}^{K} b_{k}(t) \beta_{g l k}
\end{aligned}
$$

We rely on recent implementations for fitting smoothers in the mgcv package

Knots location

Testing framework

$$
s_{g l}\left(T_{i}\right)=\sum_{k=1}^{K} b_{k}(t) \beta_{g l k}
$$

Testing null hypotheses of the form: $H_{0}: \boldsymbol{C}^{T} \beta_{g}=0$
Using the Wald Statistics $W_{g}=\boldsymbol{C}^{T} \hat{\boldsymbol{\beta}}_{g}\left(\boldsymbol{C}^{T} \widehat{\Sigma}_{g} \boldsymbol{C}\right)^{-1} \hat{\boldsymbol{\beta}}_{g}^{T} \boldsymbol{C}^{-T}$

An investigation tool

	Within the orange lineage		Between the orange and blue lineages		
Results	association Test	startVsEnd Test	diffEnd Test	pattern Test	$\begin{gathered} \text { earlyDE } \\ \text { Test } \end{gathered}$
DE					
Not DE					

Association test

$$
H_{0}: \beta_{l k g}=\beta_{l k^{\prime} g} \text { for all } k \neq k^{\prime}
$$

Contrast matrix

$\beta_{l 1 g}$	$\beta_{l 2 g}$	$\beta_{l 3 g}$	\ldots	$\beta_{l K g}$
1	-1	0	\ldots	0
0	1	-1	\ldots	0
0	0	1	\ldots	0
\ldots	\ldots	\ldots	\ldots	\ldots
0	0	0	\ldots	-1

StartVsEndTest

logged count of gene Mpo

diffTest

II. iii/ Results

Simulation framework: dynverse

a Method \quad Inferrable trajectory types
b
Inferrable trajectory types

 Tree methods

Wouter Saelens, Robrecht Cannoodt, Helena Todorov, and Yvan
Saeys. Acomparisonofsingle-cel trajectory inference methods. NatureBiotechnology
, page 1, 4 2019. ISSN 1087-0156. doi: 10. 1038 S41587-019-0071-9. URL
http: //www. nature. com/articles/s41587 -019-0071-9

Outperforms existing methods
 True pseudotime

b Bifurcating dataset

Multifurcating dataset

tradeSeq_slingshot_pattern \qquad tradeSeq_slingshot_assoc \qquad GPfates
tradeSeq Monocle2 end
tradeSeq_Monocle2_pattern Monocle3_assoc
——edgeR

Outperforms existing methods

Differential Expression Tests

Provides unique insights

C)	Within the orange lineage		Between the orange and blue lineages		
Lineages	association Test	startVsEnd Test	diffEnd Test	pattern Test	earlyDE Test
DE	DE	Not DE	Not DE	Not DE	
Not DE	Not DE	DE	DE	DE	
	DE	Not DE	Not DE	Not DE	Not DE

Provides unique insights

Provides unique insights

Gene Irf8 in the bone marrow dataset

Perspectives for tradeSeq

> Possible to develop new tests, especially to look at speed or acceleration of gene changes.
$>$ Expand the framework to test lineage \times condition interaction
> Publish the paper

Lineage \times condition

III/ Improving cluster replicability with Dune

i/ Motivation
ii/ Datasets
iii/ Measuring replicability
iv/ Method
v/ Results
III. i/ Motivations

Motivation

Clustering in scRNA-Seq

Here, we talk about clustering of cells, not genes

Clustering is used to detect cell-types, i. e. cells with a distinct common transcriptomic signature.

Many clustering methods are used in scRNA-Seq, ranging from direct application of existing clustering methods to adaptation of those methods for scRNA-Seq specific purposes.

Motivation

And all those methods have parameters of their owns

How to benchmark clustering?

The first and most common way is to compute agreement with a gold standard, usually using the adjusted Rand Index (ARI)

	$\boldsymbol{X}_{\mathbf{1}}$	$\boldsymbol{X}_{\mathbf{2}}$	\ldots	\boldsymbol{X}_{r}	Sums		
$\boldsymbol{Y}_{\mathbf{1}}$	$\boldsymbol{n}_{\mathbf{1 1}}$	$\boldsymbol{n}_{\mathbf{1 2}}$	\ldots	$\boldsymbol{n}_{\mathbf{1 r}}$	$\boldsymbol{a}_{\mathbf{1}}$		
$\boldsymbol{Y}_{\mathbf{2}}$	$\boldsymbol{n}_{\mathbf{2 1}}$	$\boldsymbol{n}_{\mathbf{2 2}}$	\ldots	$\boldsymbol{n}_{\mathbf{2 r}}$	$\boldsymbol{a}_{\mathbf{2}}$		
\ldots.	\ldots	\ldots	\ldots	\ldots	\ldots		
$\boldsymbol{Y}_{\boldsymbol{s}}$	$\boldsymbol{n}_{\boldsymbol{s} 1}$	$\boldsymbol{n}_{\boldsymbol{s} 2}$	\ldots	$\boldsymbol{n}_{\boldsymbol{s r}}$	$\boldsymbol{a}_{\boldsymbol{s}}$		
Sums	$\boldsymbol{b}_{\mathbf{1}}$	$\boldsymbol{b}_{\mathbf{2}}$	\ldots	$\boldsymbol{b}_{\boldsymbol{r}}$		\quad	
:---:							

Replicability and reproducibility

Patil, P. , Peng, R. D. \& Leek, J. T. A visual tool for defining
reproducibility and
replicability. Nat Hum
Behav 3, 650-652 (2019)

III. ii/ Datasets

Mouse Brain: 4 platforms

Pancreas data from Baron et al.

- 8569 cells and 5124 genes
- Dimensionality reduction with zinbWave + t-SNE
- Clusters from the original publication

Baron, M. , Veres, A. , Wolock, S. L. , Faust, A. L. , Gaujoux,
R. , Vetere, A. , ... Yanai, I. (2016). A Single-Cell

Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. Cell Systems, 3(4), 346-360. e4.
https: //doi. org/10. 1016/j. cels. 2016. 08. 011

Pancreas data from Segerstople et al.

- 2136 cells and 7764 genes
- Dimensionality reduction with zinbWave + t-SNE
- Clusters from the original publication

- acinar
- alpha
- beta
- co-expression
- delta
- ductal
- endothelial
- epsilon
- gamma
- mast
- MHC class II
- PSC
- unclassified
- unclassified endocrine

III. iii/ Measuring replicability

Clustering is highly sensitive to analysis choices

Original | New |
| :---: |
| Parameter |

Clustering is highly sensitive to analysis choices

Clustering is highly sensitive to analysis choices

Monocle ran on the same dataset while changing one parameter

Measuring replicability with MetaNeighbour

Expulation

For example, we compare how the output from "running ZINB-Wave + Monocle with $k=45$ " replicates over two datasets

Measuring replicability with MetaNeighbour

Crow, M. , Paul, A. , Ballouz, S. , Huang, Z. J. , \& Gillis, J. (2018). Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor. Nature
Communications, $9(1), 884$. https: //doi. org/10. 1038/s41467-018-03282-0

Supervised Metaneighbour

Supervised Metaneighbour: cluster labels are shared among datasets

Crow, M. , Paul, A. , Ballouz, S. , Huang, Z.
J. \& \& Gillis, J. (2018). Characterizing
the replicability of cell types defined by single cell RNAsequencing data using MetaNeighbor. Nature Communications, $9(1), 884$.

Unsupervised Metaneighbour

- Greedy approach: look at every pair of clusters, score each cluster by how well it predict the other
- Define the AUROC for a pair of clusters by the minimum of the two AUROC
- A cluster is replicable if AUROC > cutoff

Metaneighbour classify a pair of clusters are replicable if each cluster of the pair is well predictive of the other, and more predictive than any other cluster.

Crow, M. , Paul, A. , Ballouz, S. , Huang, Z. J. \& Gillis, J. (2018). Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor. Nature Communications, $9(1), 884$. https: //doi. org/10. 1038/S41467-018-

Resolution- Replicability trade-off

III. iv/ Methods

Pairwise merging to improve the ARI

Pairwise merging to improve the ARI

- Look at every pair of clusters over all cluster labels (or partitions)
- Merge the pair and recompute the mean ARI
- Find the pair where this improves the mean ARI the most
- Actually merge that pair
- Iterate
- Stop when you cannot improve the ARI anymore

Dune improves mean ARI

Dune improves mean ARI

ARI matrix before Merging

ARI matrix after Merging

Dune improves mean ARI

Other methods of merging

1) Build a hierarchy on the clusters based on a distance metric and linkage.

Here we picked Euclidian distance in the reduced space for the cluster medoids and complete linkage, as implemented in RSEC.
2) Merge along the tree:

1) Either merge clusters where $\%$ DE genes $<$ cutoff DE
2) Or cut tree at various heights distance clusters $^{<}$cutoff Dist

III. v/ Results

ARI with gold standard

On the Brain Smart-Seq cell dataset, we run SC3 with $\theta=0$ and then merged with the three methods

Note that

- Dune is merging using Monocle and Seurat.
- We use Dune's stopping point to stop the other methods

ARI with gold standard

- Compute the AUARIC
- With a different parameter or different clustering method or different dataset, the stopping point will vary
-> We scale the AUARIC values

Method of merging	AUARIC	Scaled AUARIC
DE	6.23	-0.41
Dist	6.28	-0.72
Dune	7.02	1.14

ARI with gold standard

3 clustering methods $\times 3 \theta_{\text {method }} \times 4$ datasets $=36$ comparisons

Scaled

AUARIC -1.0-0.5 0.0 O. 0.51 .0

Replicability over pairs of datasets

On the Brain Smart-Seq cell dataset, we run Seurat with $\theta=1.2$ and then merged with the three methods

Note that

- Dune is merging using Monocle and SC3.
- We use Dune's stopping point to stop the other methods

Replicability over pairs of datasets

3 clustering methods $\times 3 \theta_{\text {method }} \times 2$ pairs of datasets $=18$ comparisons

$\begin{array}{lllllll}\text { Scaled } \\ \text { AUARIC } & -1.0 & -0.5 & 0.0 & 0.5 & 1.0\end{array}$

Introduce some regularization?

Thanks to the tradeSeq team

Sandrine Dudoit

Kelly Street

Lieven Clement

Koen Van den Berge

Thanks to the Dune team

Sandrine Dudoit

Kelly Street

John Ngai

Koen Van den Berge

Elizabeth Purdom

Rebecca Chance

Stephan Fischer

Jesse Gillis

Davide Risso

Thanks to

- Martin Kinisu and Lin He of the He lab
- Students in the Biostat program for help in preparing this presentation and for many insightful discussions over time.
- Kelly Street for mentoring me at the beginning of my work in the Dudoit Lab
- Sandrine for being my advisor

Thank to all of you for listening

Questions?

Citations

- Deng, Q. , Ramsköld, D. , Reinius, B. , \& Sandberg, R. (2014). Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science. https: //doi. org/10. 1126/science. 1245316
- Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. ArXiv, 2 2018. URL http: //arxiv. org/abs/1802. 03426
- Franziska Paul, et al. Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors. Cell, 163(7): 1663-1677, 12 2015. ISSN 00928674. doi: 10. 1016/J. CELL. 2015. 11. 013. URL https: //www. sciencedirect. com/science/article/pii/S0092867415014932?via\%3Dihub\#app3
- Fletcher RB, Das D, Gadye L, Street K, Baudhuin A, Risso D, Wagner A, Cole MB, Flores Q, Choi YG, Yosef N, Purdom E, Dudoit S, Ngai J. Deconstructing Olfactory Stem Cell Trajectories at Single-Cell Resolution. Cell Stem Cell. 2017; 20(6): 817-30.
- Trapnell, C. , Cacchiarelli, D. , Grimsby, J. , Pokharel, P. , Li, S. , Morse, M. , ... Rinn, J. L. (2014). The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature Biotechnology, 32(4), 381-386. https: //doi. org/10. 1038/nbt. 2859
- Kelly Street, Davide Risso, Russell B. Fletcher, Diya Das, John Ngai, Nir Yosef, Elizabeth Purdom, and Sandrine Dudoit. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics , 19(1): 477, 12 2018. ISSN 1471-2164. doi: 10. 1186/S12864-018-4772-0. URL
https: //bmcgenomics. biomedcentral. com/articles/10. 1186/s12864-018-4772-0
- Wood S. N. , N. Pya and B. Saefken (2016) Smoothing parameter and model selection for general smooth models (with discussion). Journal of the American Statistical Association 111: 1548-1575.
- Wouter Saelens, Robrecht Cannoodt, Helena Todorov, and Yvan Saeys. A comparison of single-cell trajectory inference methods. NatureBiotechnology, page 1, 4 2019. ISSN 1087-0156. doi: 10. 1038/s41587-019-0071-9. URL http: //www. nature. com/articles/s41587-019-0071-9
- Tapio Lonnberg et al. Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Thi/Tfh fate bifurcation in malaria. Science immunology, 2(9), 3 2017. doi: 10. 1126/sciimmunol. aal2192. URL http: //www. ncbi. nlm. nih. gov/pubmed/2834507
http: //www. pubmedcentral. nih. gov/articlerender. fcgi?artid=PMC5365145.
- Xiaojie Qiu, 832 Qi Mao, Ying Tang, Li Wang, Raghav Chawla, Hannah A Pliner, and Cole Trapnell. Reversed graph embedding resolves complex single-cell trajectories. Nature Methods, 8 2017. doi10. 1038/nmeth. 4402. URL https: //www. nature. com/nmeth/journal/vaop/ncurrent/full/nmeth. 4402 . html.
- Lauren E. Byrnes, Daniel M. Wong, Meena Subramaniam, Nathaniel P. Meyer, Caroline L. Gilchrist, Sarah M. Knox, Aaron D. Tward, Chun J. Ye, and Julie B. Sneddon. Lineage dynamics of murine pancreatic development at single-cell resolution. Nature Communications, 9(1): 3922, 122018. ISSN 2041-1723. doi: 10. 1038/S41467-018-06176-3. URL http: //www. nature. com/articles/s41467-018-06176-3.
- Davis J McCarthy, Yunshun Chen, and Gordon K Smyth. Dierential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic acids research, $40(10): 4288\{97,5$ 2012. ISSN 1362-4962. doi: 10. 1093/nar/gks042. URL
http: //www. pubmedcentral. nih. gov/articlerender. fcgi?artid=3378882\&tool=pmcentrez\&rendertype=abstract

Citations

- David S Fischer, Fabian J Theis, and Nir Yosef. Impulse model-based dierential expression analysis of time course sequencing data. Nucleic Acids Research, 46(20): el19\{e119, 8 2018. ISSN 0305-1048. doi: 10. 1093/nar/gky675. URL https: //academic. oup. com/nar/advance-article/doi/10. 1093/nar/gky675/5068248.
- Elizabeth Purdom and Davide Risso (2019). clusterExperiment: Compare Clusterings for Single-Cell Sequencing. R package version 2. 6. 1
- Davide Risso, Liam Purvis, Russell B. Fletcher, Diya Das, John Ngai, Sandrine Dudoit, and Elizabeth Purdom. clusterExperiment and RSEC: A Bioconductor package and framework for clustering of single cell and other large gene expression datasets. PLOS Computational Biology, 14(9): e1006378, 9 2018b. ISSN 15537358. doi: 10. 1371/journal. pcbi. 1006378. URL http: //dx. plos. org/10. 1371/journal. pcbi. 1006378.
- William M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(336): 846-850, 1971. doi: 10. 1080/01621459. 1971. 10482356. URL https: //www. tandfonline. com/doi/abs/10. 1080/01621459. 1971. 10482356
- Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classification, 2(1): 193-218, Dec 1985. ISSN 1432-1343. doi: 10. 1007/BF01908075. URL https: //doi. org/10. 1007/BF01908075
- Vladimir Yu Kiselev, Kristina Kirschner, Michael T Schaub, Tallulah Andrews, Andrew Yiu, Tamir Chandra, Kedar N Natarajan, Wolf Reik, Mauricio Barahona, Anthony R Green, and Martin Hemberg. SC3: consensus clustering of single-cell RNA-seq data. Nature Methods, 14(5): 483-486, may 2017. ISSN 1548-7091. doi: 10. 1038/nmeth. 4236. URL http: //www. nature. com/articles/nmeth. 4236
- Tim Stuart, Andrew Butler, Paul Hoffman, Christoph Hafemeister, Efthymia Papalexi, William M Mauck, Yuhan Hao, Marlon Stoeckius, Peter Smibert, and Rahul Satija. Comprehensive Integration of Single-Cell Data. Cell, 177(7): 1888-1902. e21, jun 2019. ISSN 10974172. doi: 10. 1016/j. cell. 2019. 05. 031. URL http: //www. ncbi. nlm. nih. gov/pubmed/31178118http: //www. pubmedcentral. nih. gov/articlerender. fcgi?artid=PMC6687398
- Etienne Becht, Leland McInnes, John Healy, Charles-Antoine Dutertre, Immanuel W H Kwok, Lai Guan Ng, Florent Ginhoux, and Evan W Newell. Dimensionality reduction for visualizing single-cell data using UMAP. Nature Biotechnology, 37(1): 38-44, jan 2019. ISSN 1087-0156. doi: 10. 1038/nbt. 4314. URL http: //www. nature. com/articles/nbt. 4314
- Patil, P. , Peng, R. D. \& Leek, J. T. A visual tool for defining reproducibility and replicability. Nat Hum Behav 3, 650-652 (2019) doi: 10. 1038/s41562-019-0629-z
- Baron, M. , Veres, A. , Wolock, S. L. , Faust, A. L. , Gaujoux, R. , Vetere, A. , ... Yanai, I. (2016). A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. Cell Systems, 3(4), 346-360. e4. https: //doi. org/10. 1016/j. cels. 2016. 08. 011
- Segerstolpe, Å. , Palasantza, A. , Eliasson, P. , Andersson, E. M. , Andréasson, A. C. , Sun, X. , ... Sandberg, R. (2016). Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes. Cell Metabolism, 24(4), 593-607. https: //doi. org/10. 1016/j. cmet. 2016. 08. 020
- Crow, M. , Paul, A. , Ballouz, S. , Huang, Z. J. \& \&illis, J. (2018). Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor. Nature Communications, 9(1), 884. https: //doi. org/10. 1038/s41467-018-03282-0
- Risso, D. , Perraudeau, F. , Gribkova, S. et al. A general and flexible method for signal extraction from single-cell RNA-seq data. Nat Commun 9, 284 (2018) doi: 10. 1038/S41467-017-02554-5

