Unlocking the Power of Continuity in Single Cell RNA-Seq: Differential Gene Expression Along Developmental Trajectories

Talk given at the Statistics and Genomics Seminar on 04/18

Hector Roux de Bézieux Group in Biostatistics Sandrine Dudoit's lab GitHub: HectorRDB Website: http: //hectorrdb. github. io

Overview

1) Introduction to scRNA-Seq
2) Trajectory Inference with Slingshot
3) Differential Expression with tradeSeq,
4) Clustering gene patterns with RSEC

1. Introduction to scRNA-Seq

Central Dogma of biology

Single-cell RNA-Seq

Unmixing the smoothie

Recent explosion in scRNA-Seq

Data structure

	Cell 1	Cell 2	Cell 3	\ldots	Cell n
Gene 1	0	28	25	\ldots	2
Gene 2	0	3	8	\ldots	36
Gene 3	5	0	0	\ldots	0
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
Gene G	12	8	0	\ldots	11

2. Trajectory Inference with Slingshot

Dimensionality reduction

- Bone-marrow stem cells from the monocle 3 vignette
- 2660 cells and 3004 genes
- Now 2660 cells in two dimensions using UMAP

Olfactory Epithelium

Sustentacular cell (Sus)

Olfactory receptor neuron (ORN)
Immature olfactory neuron
Globose basal cell (GBC)
Horizontal basal cell (HBC)
Olfactory ensheathing glia

Bowman's gland

Olfactory Epithelium

Input Data

SC3, Seurat, RSEC, ...

Minimal Spanning Tree

Constrained MST

Incorporate prior knowledge

Principal Curves

Simultaneous Principal Curves

Highly stable
Uses cells, not clusters
Mostly congruent
across branches

Computing Pseudotime

Kelly Street, Davide Risso, Russell B. Fletcher, Diya Das, John Ngai, Nir Yosef ,Elizabeth Purdom, and Sandrine Dudoit. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics

Trajectory inference

Trajectory inference

$>$ Finding developmental paths
Each cell has a pseudotime, which measure how far along it is in the developmental process

Challenges of Slingshot

Slingshot can only tackles tree structures.

It can not handle connected (including cyclic) trajectories, nor non connected trajectories.

3. Differential Expression with trade Seq

cluster-based DE is artificial

Genes are now expressed in a continuous manner (since 2014)

Differential Expression is still cluster-based, i. e. discrete.

Trajectory-based DE

We developed trade Seq, an algorithm that leverages the continuous nature of scRNA-Seq.
> Available as an \mathbf{R} package on Github (statOmics/tradeSeq). Soon on Bioconductor.
> Modular tool that work with any dimensionality reduction and trajectory inference method.

Statistical model

$$
\begin{gathered}
Y_{g i}=N B\left(\mu_{g i}, \phi_{g}\right) \\
\mu_{g i}=\sum_{l=1}^{n} s_{g l}\left(T_{i}\right) Z_{l i}+\boldsymbol{U}_{i} \alpha_{g}+\log \left(N_{i}\right)
\end{gathered}
$$

Can accommodate
$>$ Design matrix
$>$ Different sequencing depth
$>$ Weights

Statistical model

An investigation tool

$$
s_{g l}\left(T_{i}\right)=\sum_{k=1}^{K} b_{k}(t) \beta_{g l k}
$$

Testing null hypotheses of the form:

$$
H_{0}: \boldsymbol{C}^{T} \beta_{g}=0
$$

Using Wald Statistics of the form:

$$
W_{g}=\hat{\beta}_{g}^{T} \boldsymbol{C}\left(\boldsymbol{C}^{T} \widehat{\boldsymbol{\Sigma}} \boldsymbol{C}\right)^{-1} \boldsymbol{C}^{T} \hat{\beta}_{g}
$$

An investigation

Differential Expression Tests tool

	Within the orange lineage		Between the orange and blue lineages		
Lineages	associationTest	startVsEndTest	diffrnaTest	patternTest	earlyDETest
为	DE	DE	Not DE	Not DE	Not DE
	Not DE	Not DE	DE	DE	DE
	DE	Not DE	Not DE	Not DE	Not DE
	DE	DE	DE	DE	Not DE
	DE	DE	Not DE	DE	DE
	DE	DE	Not DE	DE	Not DE

Association test

$$
H_{0}: \beta_{l k g}=\beta_{l k^{\prime} g} \text { for all } k \neq k^{\prime}
$$

Contrast matrix

$\beta_{l 1 g}$	$\beta_{l 2 g}$	$\beta_{l 3 g}$	\ldots	$\beta_{l K g}$
1	-1	0	\ldots	0
0	1	-1	\ldots	0
0	0	1	\ldots	0
\ldots	\ldots	\ldots	\ldots	\ldots
-1	0	0	\ldots	1

StartVsEndTest

color by expression of Mpo

DiffEndTest

color by expression of Prtn3

Simulation framework: dynverse

Summary
Inferrable trajectory types
Aggregated scores per experiment

Wouter Saelens, Robrecht Cannoodt,
Helena Todorov, and Yvan
Saeys. Acomparisonofsingle-cell trajectory inference methods. NatureBiotechnology
page 1, 4 2019. ISSN 1087-0156. doi: 10. 1038 S41587-019-0071-9. URL
http: //www. nature. com/articles/S41587 -019-0071-9

Outperforms existing methods

Outperforms existing methods

Provides unique insights

Gene Irf8 in the bone marrow dataset

Also works with multiple lineages

Perspectives for tradeSeq

> Possible to develop new tests, especially to look at speed or acceleration of gene changes.
> Zero-inflation weights are estimated before the smoothers. Future improvements could focus on joint-improvements.
> Publish the paper and software

3. Clustering gene patterns with RSEC

Single lineage clustering

Embryogenesis datasets > Cluster with RSEC on the genes, using the $\beta_{l k g}$ as features

Multiple lineages clustering

Bone marrow dataset:

Clusters for the top 500 genes

Limitations

$>$ Clustering with more than one lineage is hard to interpret (and sometimes leads to adherent results).
$>$ Most filtering or merging criterions used in RSEC are not applicable here. Filtering only based on cluster size might miss small but very strong signals.
> Current work by Stephanie DeGraaf might be more promising.

Sandrine Dudoit

Kelly Street

Lieven Clement

Koen Van den Berge

Thank you for listening

Any questions?

