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1 Introduction

Numerous biotechnological innovations for the quantification of mRNA abundance have been de-
veloped and used in addressing the need to cope with the deluge of biological sequencing data.
Next-generation sequencing (NGS) approaches, such as bulk RNA sequencing (RNA-seq), have
increasingly displaced microarrays in the last decade, largely owing to the fact that NGS approaches
have the significant advantage of enabling whole exome sequencing. In comparison, microarrays were
limited to investigating only a select number of pre-specified probes, leading to possible selection
bias in the analysis of sequencing data.

More recently, a slew of new technologies — broadly grouped under the umbrella of single-cell RNA
sequencing (scRNA-seq) — have made possible the quantification of transcription at the level of
individual cells. By comparison to the tissue-level analyses that bulk RNA-seq facilitated, the wealth
of biological insights made accessible by scRNA-seq (e.g., cell lineage inference) is staggering.
Such advances may be used to distinguish between nuances in cell types, to probe developmental
phenomena, or even to elucidate variability in cell populations in responses to a given stimulus
(e.g., drug intervention). Despite the new types of questions that may be answered by scRNA-seq,
bulk RNA-seq has not been made obsolete — that is, it is still useful when the scientific question
of interest concerns biological phenomena at the tissue level; for example, in studies of how the
pancreas may react to prospective new anti-diabetes drugs.

While both bulk RNA-seq and scRNA-seq have their uses, the emergence of the newer biotechnologies
has artificially dichotomized the available levels of scientific inquiry — in fact, many biologists feel
limited to analyses at the tissue or single-cell levels. Yet, there are numerous scientific questions
that exist outside of these two levels of analysis, where the dichotomy between tissue-level and
single-cell investigations is simply too restrictive. When the objective of an investigation concerns
only differences in how general types of cells (in a given tissue) respond to changes, the single-cell
level analysis provides far too much information, and therefore represents a waste of resources, while
the tissue-level analysis is simply insufficient for probing the underlying biology at the requisite
depth.

In this paper, we propose to investigate examples where an intermediary level analysis — at the
level between bulk RNA-seq and scRNA-seq — would sufficiently answer the biological question of
interest. Such an investigation would be largely statistical (and, perhaps, computational), framed in
terms of what is to be gained and lost in combining single-cell level counts to represent groups of cells.
Using two example, mouse Embryogenesis development, and spatial differentiation in a zebrafish
embryo, we demonstrate that an intermediate scale recover most of the biological meaningful results
of the single-cell RNA-seq analysis.
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2 Background

2.1 Embryogenesis

Recent scRNA-seq analysis has demonstrated that, during the first few stages of development, the
first 64 divisions, within-embryo variability is much smaller than between-embryo variability [5].
Therefore, a standard scRNA-seq analysis would yield nearly identical results at the single-cell level
or at the embryo level. Thus, ascertaining whether standard statistical methods provide concordant
results at the single-cell level and at the embryo level would provide first-pass confirmation of this
hypothesis. A few scRNA-seq data sets are publicly available for this purpose, providing information
on cell origin (i.e., which cells came from the same embryo); we plan to focus on two in particular
[5, 8].

2.2 Tumor heterogeneity

A tumor is far from a uniform environment. Cancer cells neighbor normal tissues, various cell types
can be found. Even among cancer cells, a wide diversity exist. While genetic diversity has been
observed and studied for a longer time [14], epigenetic differences [6], as well as differences of
environment (oxygen influx for example) [12] have recently been observed and seem to play an
important role. Characterizing this heterogeneity is a key part of cancer research, since heterogeneity
usually drives tumor resistance to treatment[7].

Gene-expression diversity in tumor is therefore one crucial aspect of this diversity. Our hypothesis
is that, to fully characterize this heterogeneity, the fine-scope of scRNA-se is too narrow. Indeed,
spatially nearby cells are very likely to have similar gene-expression. Sequencing more neighboring
cells is not likely to analysis results. On the other hand, merging those cells together before
sequencing will reduce dropout of count and in fact, produce more stable results.

To test this assumption, we select a zebrafish embryo dataset from [23]. In their original work, the
authors sequenced 851 cells at the surface of the spherical embryo and used known spatial gene
markers to recover the coordinates of each cell. We use those coordinates as a given to merge cells
and measure of much the result change when compared to single-cell level analysis. An overview of
the cells’ location on the zebrafish embryo can be found in fig. 5. *** HRB: Should be one or two
figures? Or maybe one in appendix as well

(a) (b)

Figure 1: View of the cells (black points) collected on the zebrafish embryo (red sphere). The
delimitation of the collections area is with the red lines.
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3 Methodology

3.1 Merging the single cells

We want to simulate sequencing data from groups of cells. In order to do so, we numerically -
and therefore artificially - collapse the read count data from single-cells into broader groups. To
consolidate data to such an intermediary level, read counts from individual scRNA-seq cells could be
combined, based on an arbitrary summarization, into those groups. Standard statistical analysis of
RNA-Seq data (see 3.3) can then be performed on those centers, considered as bulk RNA-Seq samples.

To better simulate the sequencing mechanism, summing the reads is the most sensible. Indeed, it will
give the same number of reads overall, to fewer samples. We therefore have a similar sequencing
"budget" to reproduce the results. The intermediate step has fewer samples but deeper sequencing,
compared to the single-cell. However, normalization is an essential first step of RNA-Seq data
analysis. To mimic this normalization step as well, we instead collapse the count as the mean read
count for any given gene.

3.2 Random merging of the cells into larger groups based on spatial location

As detailed in the background section 2, embryo-derived single cell have a natural level at which to
be merged: the embryo from which they came from. Indeed ,those embryos are easily sequenced and
collected. Breaking them to a single-cell level only increases the cost of the experiment. So, the
"centers" of our new embryo data are the individual embryo themselves.

However, no such obvious level exists for the zebrafish dataset. Hence, we imagine a sampling
mechanism that tries to reproduce a real-life setting: cells that are physically close are much more
likely to be sampled together. The repartition of the n single cells into k groups (k < n) was done in
the following manner:

1. Sample k centers on the sphere randomly.

2. Assign each cell to its nearest center, based on orthodromic distance, the distance measured
along the surface of the sphere.

Then, each center’s count data was just the mean of all the count of the cells that got assigned to it.
To assess how the randomness in sampling would affect the result, we repeated the value 15 times for
each value of k.

3.3 Single-cell RNA-Seq tools

We plan to evaluate a subset of several standard single-cell RNA-seq (scRNA-seq) methodologies,
including clustering, differential expression, and, time permitting, lineage inference.

3.3.1 Clustering

We use the clusterExperiment package[18] and framework. We also make use of the Hierarchical
Ordered Partitioning And Collapsing Hybrid (HOPACH), a clustering method that combines the
strengths of both hierarchical and partitioning approaches, and its associated implementation
in the hopach package [16, 27]. Both software implementations are available through the
Bioconductor project for the R language and environment for statistical computing [9, 11, 19]. The
clusterExperiemnt package is built for finding small stable clusters of cells based on gene expression.

The clustering algorithm of clusterExperiment works in three steps:

1. Apply a number of clustering algorithms with various (sensible) tuning parameter values.
Those algorithms are applied to random subsample of the cells (or genes in our case).

2. Build a co-clustering matrix C where Ci,j ∈ [0, 1] denotes the proportion of times cells i
and j clustered together, among all the times those cells were both sampled for the subset.
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3. Based on that co-clustering matrix, find stable clusters, i.e., groups of cells that cluster
together at least p% of the time (p is user-defined).

4. Merge clusters that are too similar.

Because we impose a minimum size for a cluster in steps 1 & 3, some cells will be left un-clustered.
For more information, see [18].

The clustering algorithm of HOPACH works in the following general manner:

1. The algorithm operates on a matrix of pairwise distances between the observations to be
clustered (in our case, these are a set of selected genes).

2. A hierarchical tree of nested clusters is built by recursively partitioning the observations.

3. At each level of the tree, clusters are split into two or more clusters using a partitioning
clustering procedure such as partitioning around medoids (PAM), i.e., splits are not restricted
to be binary.

4. At each level of the tree, clusters are ordered and possibly collapsed.

5. To assess confidence in cluster assignment, the bootstrap may be used.

To examine how clustering may be perturbed between standard scRNA-seq data and combined data,
we present the results of clustering a distance-matrix of the set of genes found to be differentially
expressed in the standard scRNA-seq data. Distance matrices comparing the two approaches are
presented in section 4.

3.3.2 Differential expression

We use edgeR, a procedure that makes use of the negative binomial model, and limma, a method
that assumes a Gaussian model but transforms count data to achieve good, empirically validated
differential expression results. In the edgeR model, the mean counts µij for gene i sample j is a
function of the total number of reads for sample i and the relative abundance of gene j for sample i as
they relate to the experiment group within which sample i is situated. This relative abundance is the
parameter of interest in our differential expression analysis. To estimate the degree of overdispersion,
an empirical Bayes procedure is used [21].

The model of limma does not differ significantly from a standard linear modeling procedure, though
there are two key alterations that make limma suitable for differential expression analysis of RNA-seq
data. In particular, [13] proposed the so-called voom transformation, which is used in assessing
the mean-variance relationship of count data via a standard (Gaussian) linear model — empirically,
this procedure has been shown to work quite well [20]. The original chief innovation of the limma
procedure was an shrinkage estimator of the standard error, derived though a hierarchical Bayesian
model — in particular, the proposed variance estimator is useful in creating a moderated t-statistic,
which has enhanced performance in small samples owing to the fact that it borrows across samples to
create a pooled variance estimate:

t̃b =
β̂1,b
σ̃b
n

where σ̃2
b,n =

d0σ
2
0 + db(σ

b
n)

2

d0 + db
,

where db is the degrees of freedom for the bth gene/biomarker, d0 is the degrees of freedom for the
remaining (B − 1) genes/biomarkers, σb

n is the standard deviation for the bth biomarker and σ0 is the
common standard deviation across all biomarkers towards which shrinkage is performed [24]. Since
there are B hypothesis tests performed (of null hypotheses H0,b : β1,b = 0, for genes/biomarkers
b = 1, . . . , B), we make use of the standard Benjamini-Hochberg procedure for controlling the False
Discovery Rate (FDR) [4]. In discussions of differential expression results, genes are labeled as
significant if their adjusted p-values were below the cutoff of 0.05, ensuring that, in expectation, the
number of false discoveries is limited to 5%.
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4 Results

4.1 Zebrafish embryo

We collapsed the single-cell data into groups, from 30 to 759, compared with originally 851 single
cells, following the process described in 3.2. An example of how cells are assigned, with just seven
groups for better visualization, can be found in Fig. 2.

Figure 2: Random assignment of the cells. Cells are colored by their assignment, following the
process in 3.2. The zebrafish embryo is in light red.

After collapsing the data, we identified stable clusters using clusterExperiment[18], described in
3.3.1, and then picked the top 1000 DE genes, according to edgeR [21]. We only look at the top
1000 since usually, biologists just focus on the top genes, regardless of the associated p-values.
We then compared the concordance of this list of 1000 genes to the list found when following the
same framework with the single-cell dataset and obtained a concordance score. Since the collapsing
algorithm is random, we collapse 15 times for each number of groups. Results can be seen in Fig. 3.
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Figure 3: Score of the collapsed data compared to the single-cell, for 15 collapse per group number

As we can see, the score for the lowest value of k is of the same order of magnitude as the score
for the highest value, where we are near single-cell levels. For intermediate values of k, we have a
strong heterogeneity. With only 30 groups collected, we can achieve the same results as with 760.
Our initial hypothesis is correct.

4.2 HOPACH clustering concordance

To assess the impact of cell-level aggregation on clustering, we employed the HOPACH clustering
algorithm, briefly detailed in 3.3.1. To assess concordance between cluster assignments, HOPACH
clustering was performed on the set of genes found to be differentially expressed in the non-aggregated
scRNA-seq data, using both the non-aggregated counts and their aggregated counterparts. The
distance matrix between gene-level counts was assessed, after imposing the cluster-based ordering of
HOPACH, for both the non-aggregated and aggregated data.

(a) HOPACH with non-aggregated data (b) HOPACH with aggregated data

Figure 4: Distance matrices of the non-aggregated and aggregated scRNA-seq data with HOPACH
ordering based on the relevant matrix of gene-level counts for the Biase et al. data.

With HOPACH, clusters with genes of similar expression are represented as blocks on the diagonal of
the matrix. Indeed, we notice some discrepancies in the ordering and distance matrices generated by
the HOPACH algorithm — while this does not readily allow us to draw any scientific conclusions, it
points to an area of further investigation. In general, we would expect the aggregated data to behave
more like standard (bulk) RNA-seq data, in that it will be less prone to the effects of dropout sparsity
and the like.
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4.3 Differential expression concordance

To assess concordance in differential expression, we used the approach based on moderated statistics
as implemented in the limma R package [24]. Separately, for both the data sets of Biase et al. and
Deng et al. , both the non-aggregated and aggregated scRNA-seq data was analyzed in the following
set of steps:

1. Perform quanntile normalization to remove the potential effects of unwanted variation.

2. Perform the ”voom“ transformation, which alters count data into a representation based on
the mean-variance trend of the original counts, and estimate sample-level weights so as to
downweight possibly uninformative (e.g., contaminated) samples.

3. Fit a linear model of the form Y = Xβ, estimating a regression coeffcient β1 for the cell
state (e.g., 2 cells, 4 cells, etc.)

4. Compute the moderated t-statistic (or F-statistic) using a shrinkage estimator of the standard
error that pools across samples.

5. Correct for multiple testing using the Benjamini-Hochberg procedure to control the False
Discovery Rate at 0.05 [4].

For the set of genes identified as differentially expressed in the non-aggregated scRNA-seq data (with
adjusted p-values below 0.05), we examine the distribution of adjusted p-values in the aggregated
data below
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(a) Biase et al.’s data
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(b) Deng et al.’s data

Figure 5: Comparison of the distribution of adjusted p-values for genes differentially expressed in
non-aggregated data.

We note that there generally appears to be good concordance between the two approaches, as most of
the points appear in the bottom left-hand corner (low adjusted p-values under both analyses). The
data of Deng et al. appears to show much more variability in the aggregated adjusted p-values for
potentially highly statistically significant genes — at first glance, it appears that cell-level aggregation
may be drowning out some potentially significant findings, though this may equivalently be interpreted
as the aggregration procedure leading to more conservative hypothesis tests. As with the clustering
procedure, this requires further investigation before any conclusions can definitively be drawn. We
note here that this interpretation of cell-level aggregation as a possibly more conservative testing
procedure may be advantageous in assessing the quality of scRNA-seq findings in future studies.

5 Future directions

The present article is merely an initial investigation into how pattern discovery in single-cell RNA-seq
data may be performed when information from groupings of cells are collapsed — including in
both spatially and developmentally related groups of cells. Much remains to be done. In particular,
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we initially proposed the comparative assessment of lineage inference techniques between scRNA-
seq and collapsed data as well as the use of nonparametric methods for biomarker discovery. A
general manner in which lineage inference may be compared is given in the sequel while details on
nonparametric methods is deferred to a later draft.

5.1 Lineage inference

A variety of statistical methods have been developed to probe developmental processes and estimate
the location or pseudotime of each cell along lineages based on single-cell RNA-Seq expression
measures.

Lineage inference techniques usually follow the following framework:

1. Project the cells in a lower dimensional space.

2. In that lower dimensional space, find curves in a data driven way. Depending on the methods,
the number of curves or the endpoints may need to be specified.

3. Each curve now represent a lineage. Each cell can be projected on each of those lineages.
The distance between the projection and the beginning of the curve is called pseudotime.

Several observations can be made in this framework. Since the space in which the curves exists is a
low-dimensional space of gene expression, the pseudotime measures the amount of genomic variation
since the start. As such, the pseudotime is more of a distance than a time, and another word used in
the literature instead of lineages is trajectories.

For more information and an overview of these techniques, see [22, 25]. Based on a recent
review[22], we selected the Slingshot algorithm [25].

Slingshot requires as input a low-dimension representation of the cells, as well as cluster labels
for each cell. It then construct a minimal spanning tree between cluster centers. Once this tree is
constructed, it fit principal curves simultaneously on all lineages. This, in essence, smooths the tree
in the reduced space. If end clusters or starting clusters are given, it is then possible to determine
the location of the starting point of the trajectories. Pseudotime of a cell along a trajectory is then
computed as the distance from this starting point to the orthogonal projection of the cell onto the
associated curve.

6 Discussions

For the zebrafish embryo example, we can however see that, even at the highest value of k, we
only achieve a score of around 40%, which is quite low in term of reproducibility. One possible
reason is that the tuning of the hyper-parameters of the clustering algorithms was done on the
single-cell data and may not be the most appropriate at every step. Poor clustering would have a
strong impact on downstream DE analysis and could therefore explain the gap. Using clustering
algorithm that require less user-tuned hyper-parameters would help improve the pipeline, since
manual tuning of the hyper-parameters is not possible here (we have 150 simulated datasets). Another
hypothesis is the assignation mechanism. For higher number of groups, the number of cells assigned
to each group is highly variable, which does not reflect a biologically meaningful collection process.
A more realistic mechanism would limit this variation. Likewise, the merging through a simple
summation of count data is likely not representative of real-world situation. Indeed, sequencing
amplification bias are numerous. Using genes GC content to simulate that bias could improve the
realism of the simulation. Finally, any conclusion drawn on this type of data would require extensive
validation on real tumor dataset. Emergence of new tools that make use of joint FISH and RNA
sequencing to assess spatial location of single-cells will help to generate more realistic datasets
that will serve as more reliant benchmarks. All code for our analyses is available on GitHub at
https://github.com/HectorRDB/CS924_Final_Project.
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