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1) Introduction

Chickenpox is a highly contagious airborne disease and no vaccine was available until the end of the 1980’s.
Before that, adults and children were affected with no known immunization. While the disease is relatively
harmless in children, it can much more often be lethal in adults, especially in pregnant women where it
was linked to pneumonia. Therefore, correctly predicting future trends in disease propagation is very useful.
While chickenpox is now lesser threat, the methods developed here are also relevant to any other contagious
disease.

Here, we focus on chickenpox cases in New York City in the middle of the 20th century, for 498 consecutive
months. The data is available at https://datamarket.com/data/set/22v7/%20monthly-reported-number-of-
chickenpox-new-york-city-1931-1972/#\%20protect\%20kern-.1667em\%20relaxds=22v7&display=line

2) Exploratory Data Analysis

The first thing we can do is plot the time series: We can clearly see annual periodicity in the plot, as well as
a downward trend starting from the 1950’s.

y <- ts(chickenpox, frequency = 12, start = 1931)
plot(y)
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Figure 1: Visualization of the time series
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We can then plot the spectral representation of the time series: as we can see, we have especially high peaks
at 1 year, and the harmonic frequencies of 1 year, as could be observed already from the raw plotting of the
time series.

t <- spectrum(y)
abline(v = c(1, 2, 3, 4, 5), col = "red")
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Figure 2: Raw Periodogram

Finally, given the annual periodicity, it ca be especially interesting to look at the lagged difference for this
time series. So we perform differentiation with a lag of 12. However, the new time series does not seem to
exhibit any particularly interesting behavior so we will stick to modeling the initial time series.

plot(y - lag(y, 12))
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Figure 3: Lagged-difference

2



3) Modelization

1) General idea

We write Yt, the realization of our time series measuring the number of occurrences. Our global model is
to write Yt = f(t) +Xt where Xt+1 = g(Xt−k, Xt−k+1, ..., Xt−1). We will try a variety of functions f and g
(and values of k) in the next sections. The reasoning behind choosing such a model comes from the graph of
the time series where we can see a behavior that only depend on time but not on previous realizations and a
part that depend on time.

2) Choice of f

1) First model: linear model

We model f(t) = α+ βt+
∑5
i=1 ci(cos(

2πit
12 ) + sin( 2πit

12 )) with t in months.

c <- s <- list()
for(i in 1:5){

c[[i]] <- cos(2*i*pi*(1:498)/12)
s[[i]] <- sin(2*i*pi*(1:498)/12)

}
design <- data.frame(1:498, c, s, y)
colnames(design) <- c("t", paste0("c", 1:5), paste0("s", 1:5), "y")
lm_fit <- lm(y~., data = design)
plot(y)
lines(seq(from=1931,length.out=498, by=1/12), fitted(lm_fit), col = "green")
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Figure 4: Time series and fitted value of the linear model

As we can see, the fitted values are off from the real values. If we plot the residuals, we see a clear trend.
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plot(y - fitted(lm_fit))
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2) Second model: GLM

Plotting the log of counts seem to lead to a more uniform trend so we decide to update the model to
log(Xt) = f(t) + εt.
plot(log(y))
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Figure 5: log counts as a function of time

The log representation of the time series incite us to fit a Generalized Linear model with a Poisson assumption,
since the log seems a good link function in this case. Moreover, we noticed on Figure 1 that the trend seems
to be different from various blocks of time so instead of fitting a polynomial as a function of time, we fit a
cubic spline with 3 degrees of freedom, St. So we get:

f(t) = St +
5∑
i=1

ci(cos(
2πit
12 ) + sin(2πit

12 ))
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xspline <- ns(c(1:498), df = 4)
Poisson_fit <- glm(y ~ xspline + ., data = design, family = "poisson")
plot(y)
lines(seq(from=1931,length.out=498, by=1/12), fitted(Poisson_fit), col = "green")
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Figure 6: Time series and fitted value of the generalized linear model

If we now look at the residuals from our model, we can see that they have a mean of roughly zero.

plot(y - fitted(Poisson_fit))
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Figure 7: Residual from the generalized linear model as a function of time

This shows that we managed to transform our time series to a stationary time series. We can now focus on
fitting a model to the residuals

5



3) Choice of Xt

1) Scaling of the residuals

The first thing we can notice is that higher values have higher variance than smaller values. Therefore, we
focused on the scaled-residuals, also known as Pearson’s residuals Zt = Yt−Ŷt√

Ŷt

. In Figure 8, we can see that
this lead to a more homogeneous residuals

Z <- (y - fitted(Poisson_fit))/sqrt(fitted(Poisson_fit))
plot(Z)
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Figure 8: Scaled Residuals

2) Finding the best-model for Zt

We fit an ARMA model on Zt such as we have: Zt =
∑p
i=i φiZt−i +

∑q
i=1 θiεt−i + εt, with εt white-noise. We

try to find the best p and q using the Bayesian Information Criterion (BIC) as a model selection criterion.

auto.arima(Z, d=0, ic = "bic", stepwise = F)

## Series: Z
## ARIMA(2,0,0) with zero mean
##
## Coefficients:
## ar1 ar2
## 0.9365 -0.2273
## s.e. 0.0437 0.0441
##
## sigma^2 estimated as 24.56: log likelihood=-1503.24
## AIC=3012.48 AICc=3012.53 BIC=3025.11

Using BIC, we select an ARMA(2, 0) model for Zt so we model Zt = φ1Zt−1 + φ2Zt−2 + εt.
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epsilon <- Z - fitted(Arima(Z, order = c(2, 0, 0)))
plot(epsilon)
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Figure 9: View of the residuals from the ARMA(2, 0) model
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Figure 10: View of the residuals from the ARMA(2, 0) model

We can finally see how well we fit the residuals. Overall, we see no behavior that would lead us to invalidate
our model and we therefore now look at its predictive power.
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plot(Z)
lines(fitted(Arima(Z, order = c(2, 0, 0))), col = "red")
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Figure 11: Fitted values versus actual values for Xt

4) Predicite power

1) Residuals: one-step ahead prediction

Starting at the 121th month until the end, we fit the ARMA(2, 0) model on the past residuals and we predict
the next value. We can then compare this fitted value to its actual realization.

predict <- matrix(0, ncol = 3, nrow = 498 - 120)
for(i in 121:498){

val <- forecast(Arima(Z[1:i], order = c(2,0,0)), 1)
predict[i - 120,] <- c(val$lower[,2], val$mean, val$upper[,2])

}

predict_lo95 <- ts(predict[,1], frequency = 12, start = 1941)
predict_mean <- ts(predict[,2], frequency = 12, start = 1941)
predict_hi95 <- ts(predict[,3], frequency = 12, start = 1941)

plot(Z)
lines(predict_mean, col = "red")
lines(predict_lo95, col = "green")
lines(predict_hi95, col = "green")

2) Actual forecasting: prediction of the last 18 months

We re-train the whole model (f and ARMA(2, 0)) without the last year and we try to predict the last year to
see how well we perform.
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Figure 12: Actual realization (black) versus one-step ahead prediction (red) with a 95 confidence interval
(green)

Z_train <- ts(Z[1:480], frequency = 12, start = 1931)
Z_test <- ts(Z[481:498], frequency = 12, start = 1971)
Z_predict <- forecast(Arima(Z_train, order = c(2,0,0)), 12)
plot(Z)
lines(ts(Z_predict$mean, frequency = 12, start = 1971), col ="red", lwd = 2)
lines(ts(Z_predict$lower[,2], frequency = 12, start = 1971), col ="green", lwd = 2)
lines(ts(Z_predict$upper[,2], frequency = 12, start = 1971), col ="green", lwd = 2)
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Figure 13: Actual realization (black) versus prediction (red) with a 95 confidence interval (green) over the
last 18 months
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5) Discussion

We clearly observe a seasonal trend in the data, with chickenpox counts being significantly higher in winter
and the beginning of spring, with clear peaks between March and May, consistently with our observations.
Moreover, we notice a strong downward trend starting in the mid 1950’s. While chickenpox vaccine wasn’t
invented until much later, other safety measures (quarantines, better monitoring, keeping children out of
school during epidemics) can also lower the number of infected individuals and where possiblby enforced by
New York Public Health Department.

Chickenpox, furthermore, is a contagious disease, that is passed on by contact or by infected people’s sneezes
since the disease is airborne. Therefore, the model proposed by our ARMA model is sensible. On top of
seasonal behavior, the number of occurrences is heavily linked to the number of occurrences over the previous
months. Since symptoms take between 10 to 21 days to appear, it is logical that the number of occurrences is
the previous months is positively linked to the occurrences in the next month. This is reflected in our ARMA
model where φ1 = 0.94.

It is harder to explain why φ2 = −0.23. A fist comment is that |φ2| < |φ1|: the previous month has more
impact than the one before that. However, the fact that φ2 < 0 might seem counter-intuitive. One possible
explanation is that, since chickenpox is highly contagious, a high number of occurrences tow months in a row
lead to much smaller number of people susceptible to catch the disease in the 3rd month, hence the negative
sign. This explanation is in no mean certain and deeper domain-knowledge would be necessary here to get a
better understanding of the phenomenom at hand.

Our model is not able to predict very far into the future, as we can see from Figure 13. However, its accuracy
over the span of the next months is quite good and could already have help to shape public policies.
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