
Finding All Significant Closed Connected Subgraphs

Anonymous Author(s)
Affiliation
Address
email

Abstract

In many applications, covariates describing the data are structured according to a known1

graph G. Subgraphs of G can then serve to design new covariates, yielding an enriched2

representation of the data. Testing the association of these new covariates to an outcome of3

interest can provide more insight on critical biological processes. However, the number of4

subgraphs is often exponential in the number of original covariates. Therefore, a method5

testing all possible subgraphs would have very low power, due to multiple testing corrections6

and could quickly become computationally intractable. The concept of testable hypothesis7

has been used to simultaneously address both issues in similar contexts. Here, we introduce8

a method leveraging this concept to test all closed connected subgraphs, i.e., those which9

are not included in a larger one leading to the exact same covariate. We propose a novel10

enumeration scheme for these objects which fully exploits the pruning opportunity offered11

by testability, leading to drastic improvements in speed. We illustrate this improvement12

on both real and simulated datasets. This paves the way for numerous applications in13

biomedicine, especially for genome-wide association studies in bacterial genomes.14

1 Introduction15

Networks are pervasive in molecular biology, and can represent, for instance, gene regulations or interactions16

between proteins or metabolic pathways. They are also a major opportunity for statistical analysis, as many17

applications involve few samples and many descriptors, leading to high-dimensional problems. Bacterial18

Genome-wide association studies (GWAS) is an example. GWAS aim at finding genetic variants whose19

presence in a genome is associated with a phenotype. When studying bacterial genomes, e.g., to identify20

genetic determinants of antibiotic resistances, the tested variants are often the presence or absence of k-mers,21

i.e., words of length k, in the genomes of the samples. However, a gene or a plasmid whose presence in the22

genome makes bacteria resistant can be longer than k and exist in slightly different version, and therefore be23

represented by many different k-mers. Jaillard et al. [2018] proposed DBGWAS, a method using the De Bruijn24

graph that connects overlapping k-mers to help interpret the result of the GWAS: if several significant k-mers25

arise from a single polymorphic gene, they typically aggregate into linear subgraphs. DBGWAS exploits the26

De Bruijn graph for visualization but still relies on a separate statistical test for each k-mer, while testing the27

association between antibiotic resistance and the presence of any version of the resistance-causing gene could28

yield more power. This presence would correspond to a single covariate indicating the presence of any k-mer29

among those represented in the subgraph.30

A systematic approach would therefore be to test each connected subgraphs of the De Bruijn graph, but this31

seems doomed for two reasons: (1) their number grows exponentially with the number of nodes in the network,32

making the task usually computationally intractable, and (2) adjusting for multiple testing over this very large33

number of tests leaves little to no power to detect associations. Here we propose a method addressing these34

two issues by using the concept of testability introduced by Tarone [1990]. Tarone’s procedure allows to35

control the family-wise error rate (FWER) while disregarding a large number of (non-testable) hypotheses36

in the multiple testing correction. Intuitively, considering the presence of any k-mer among a growing set37

corresponding to larger and larger connected subgraphs quickly leads to all-one covariates, which cannot be38

associated to any phenotype, making the actual number of tests more manageable. Testability provides a39

well-grounded and quantitative version of this intuition. Furthermore, since adding nodes to a subgraph can40

only increase the number of ones in the tested covariate, we are able to rapidly prune non-testable subgraphs,41

which solves the computational problem.42

Testability has been used in similar situations, but most existing procedures are restricted to complete [Terada43

et al., 2013, Minato et al., 2014] or linear graph [Llinares-López et al., 2015, 2017]. Sese et al. [2014] described44

an algorithm to test all connected closed subgraphs (CCSs), i.e., connected subgraphs such that adding any45

neighbor does not affect the created covariate. They combined the testability-based procedure LAMP of Terada46

et al. [2013] with COIN [Sese et al., 2010], an enumeration method for CCSs. While no experiment was47

provided in Sese et al. [2014], we found that combining COIN with an improved version of LAMP [Minato48

et al., 2014, Llinares-López et al., 2015] could find all significant CCSs in graphs with up to 20,000 nodes in a49

day in favorable settings. However modern applications such as bacterial GWAS involve millions of nodes, so50

a more scalable method is necessary to make CCSs testing amenable.51

Our contributions are the following: We introduce a novel, provably complete and non-redundant enumera-52

tion scheme for CCSs named CALDERA, that leads to faster exploration than COIN, and to more pruning when53

combined with Tarone’s procedure. We show that this makes it possible to find all significant CCSs in a large54

graph, making it suited to applications such as bacterial GWAS, a critical and contemporary problem for55

human health. We provide—in the Supplementary material—the first implementation of a procedure finding56

all significant CCSs.57

Notation and goal We consider a set of n samples, (xi, yi)
n
i=1, where xi ∈ {0, 1}p are p binary covariates58

describing sample i and yi ∈ {0, 1} denotes a binary phenotype. Furthermore, we consider an undirected59

unweighted connected graph G = (V, E), where V = {v1, . . . , vp} and each vertex vj ∈ V represents60

one of the p binary covariates represented in x. We denote by I(vj) = {i : xji = 1} the set of samples61

having a 1 for covariate represented by vertex vj , and Vi = {v ∈ V : i ∈ I(v)} the set of vertices whose62

covariate is 1 for sample i. For any connected subgraph S = (V ′, E′), such that V ′ ⊆ V and E′ ⊆ E, we63

let I(S) =
⋃
v∈V′ I(v). The set of all connected subgraphs of G is denoted by A. Of note, this framework64

addresses both disjunctions and conjunctions, as the latter can simply be obtained by replacing each xi65

by its complement. We now properly define the notion of closed connected subgraph. The validity of the66

corresponding closure operation is proved in Supplementary S-1.1.67

Definition 1. A connected subgraph S ∈ A of G = (V, E) is closed if and only if there exists no edge68

(v1, v2) ∈ E such that v1 ∈ S, v2 /∈ S, and I(S
⋃
{v2}) = I(S). We denote by C ⊆ A the set of all closed69

connected subgraphs of G.70

Considering (xi, yi)
n
i=1 n i.i.d. realizations of random variables X,Y, we aim to test null hypotheses of the71

form HS0 (X,Y) :
(
I(S) ⊥ Y) for all S ∈ C, while controlling the FWER at level α. Translated in the72

context of GWAS, we want to test the association between the pattern I(S) of each closed connected subgraph73

S with the phenotype Y.74

2 Speeding up the detection of all significant CCSs with CALDERA75

2.1 Tarone’s testability76

The Bonferroni correction [Bonferroni, 1936] controls the family-wise error rate (FWER) at a level α. A null77

hypothesis is rejected if its p-value is smaller than α
N , where N is the total number of tested null hypotheses.78

As described in Tarone [1990], discrete tests admit a deterministic minimal attainable p-value p?, which can be79

used to control the FWER with a substantially smaller correction factor than N . Defining m(k) as the number80

of hypotheses such that p? < α
k , the lowest threshold guaranteeing that the FWER is controlled at a level α is81

α
k0

, where k0 is the smallest k such that m(k) ≤ k. Provided that enough closed connected subgraphs have82

sufficiently large p?, Tarone’s procedure could therefore solve the multiple testing issue caused by exploring83

C. Importantly, non-exhaustive strategies have been proposed to determine k0, by exploiting a monotonicity84

property of p?, i.e., p?(S) ≤ p?(S ′) for any S ⊆ S ′. If S is non-testable, all S ′ ⊇ S can be discarded without85

being processed, making the procedure tractable provided that subgraphs are explored in the right order. More86

precisely as highlighted by Minato et al. [2014], Llinares-López et al. [2015], all subgraphs S ′ explored from87

a subgraph S should be such that S ′) S.88

2.2 Critical properties for a fast, Tarone-aware enumeration of C89

The testing procedure based on testability relies on an exploration of the set of hypotheses—in our setting,90

one for each element of C. The scalability of the testing procedure is affected by both the computational91

behavior—speed and memory footprint–of the exploration scheme itself, and its ability to take advantage of92

the pruning opportunity offered by the Tarone procedure. To provide a fast exploration, we ensure that it is93

non-redundant: each element of C is enumerated exactly once. To do this, we define a tree structure whose94

nodes are the elements of C and propose an algorithm to traverse this tree. Furthermore, the tree is directly95

built over C, as opposed to the set A ⊃ C of connected subgraphs. This latter option is found on the COIN96

algorithm described in Seki and Sese [2008], Sese et al. [2010], which builds a tree over the set of connected97

subgraphs. This yields a much larger object and results in a slower traversal. Furthermore in order to exploit98

the pruning opportunity offered by the testing procedure, our tree over S is such that the children of a node99

representing S ∈ C always represent subgraphs S ′ (S. While Haraguchi et al. [2019], Okuno et al. [2017]100

2

define a tree on C, the root of that tree corresponds to the entire graph G: the inclusion relationship along edges101

of the tree is the opposite to the one we need, making this unsuited to our problem.102

2.3 Defining and exploring the tree over C103

To build a tree over C rooted on the empty CCS, we use a reverse search [Avis and Fukuda, 1993]. Reverse104

search relies on a reduction operation, which takes one element of the set to be enumerated, and returns a105

unique, strictly smaller element of the same set called its parent. This operation necessarily defines a tree over106

the elements of the set, by ensuring a unique path between any element and the empty one—the root of the107

tree. In order to traverse the tree from the root, one needs to inverse the reduction operation: given a CCS S,108

this would recover all CCSs that lead to S by reduction. Here we introduce a reduction operation over C, as109

well as its inversion. We rely on an arbitrary numbering of the vertices in V , and denote by abuse of notation110

maxS the vertex in S that received the largest number.111

Definition 2. For a subgraph S ∈ C, we denote J (S) =
⋂
v∈S I(v). We note iS = max(I(S) \ J (S)). The112

parent P(S) of S is the connected subgraph of S \ ViS that contains maxS \ ViS . (If I(S) = J (S), then113

the parent of S, P(S) is ∅.)114

Lemma 1. The function P defines a valid reduction over C.115

Algorithm 1 Children of S
1: procedure CHILDREN(S, Sp, i, T)
2: children← ∅
3: for k,G in enumerate(EqGroups(S)) do
4: v ← G[0]
5: S ′ ← cl(S

⋃
{v})

6: if i is NULL then
7: if (S,S ′) verify (C1-C3) then
8: Add S ′ to siblings
9: Add Children(S ′,S, iS′ , T = ∅) to children

10: end if
11: else if (Sp,S ′) verify (C1-C3) then
12: if iS′ = i and {I ∈ T : I ⊂ I(S ′)} = ∅ then
13: T ′ = T

⋃
{I1(S ′), . . . , Ik−1(S ′)}

14: Add Children(S ′,Sp, iS′ , T ′) to children
15: end if
16: end if
17: end for
18: return children
19: end procedure

Note that we have S) P(S) for all S116

so this structure allows pruning. For any117

subgraph S, we further note Ne(S) =118

{v ∈ G \ S : ∃v1 ∈ S, (v, v1) ∈119

E} the set of neighbouring nodes of S.120

Lemma 2 provides necessary and suffi-121

cient conditions for S ′ ∈ C to be a child122

of S ∈ C:123

Lemma 2. For S,S ′ ∈ C such that S ⊂124

S ′, S = P(S ′) if and only if the three125

following conditions are verified:126

(C1) iS′ /∈ I(S)127

(C2) maxS ′ \ ViS′ = maxS128

(C3) {v′ ∈ S ′\ViS′ : v
′ ∈ Ne(S)} = ∅129

130

Interestingly, the reduction itself is never131

used when exploring the tree from the132

root, only its inverse. Besides, using (C1–133

3) in Lemma 2 to check whether S =134

P(S ′) for any S ′ does not require to identify the connected components of S ′ \ViS′ , even though the reduction135

P itself does rely on these connected components. This property of the inverse reduction is critical for the136

scalability of CALDERA, as repeatedly identifying or maintaining these components would be very costly. It137

results from the fact that the reduction operation P does not maintain connectivity—it only retains one of the138

components obtained by removing nodes with iS . Doing so comes at a price: finding the children of S is not139

straightforward, as we must identify and reconnect all the connected components involved. By Theorem 1,140

Algorithm 1 solves this problem and effectively inverts the reduction, therefore of building a tree over C.141

Theorem 1. For any S ∈ C, Algorithm 1 returns the set {S ′ ∈ C : S = P(S ′)}.142

Algorithm 1 exploits a partition of Ne(S) into equivalence groups Gk(S) with regard to the pattern, i.e.,143

v1, v2 ∈ Gk(S) =⇒ I(S
⋃
{v1}) = I(S

⋃
{v2}). Ik(S) denotes the pattern of the equivalence group144

Gk(S). Note that in practice, we do not need to store the full table T in order to verify the second condition of145

Algorithm 1, Line 12 (see Supplementary S-2).146

2.4 A breadth-first-search enumeration147

Exploring any tree structure on C in breadth first often allows for more pruning than in depth first. Previous148

work, including Llinares-López et al. [2017], have used BFS but did not specifically highlight its interest. Note149

that COIN performs a depth-first search [Sese et al., 2014]. Here, we implemented both versions of CALDERA150

to show the gains of BFS. This is evidenced in the simulation results. Supplementary section S-3 provides a151

general intuition for this result. Algorithm S-1 describes a general implementation of the BFS enumeration of152

3

all elements of C while implementing the pruning mechanism described above. Moreover, a search in breadth153

is also easily parallelized since the computation of the minimal p-value and the children of every CCS of a154

given level can be done in parallel, contrary to DFS.155

3 Experiments156

3.1 Speed benchmark on simulated data157

1

10

100

1000

10000

100 1000 10000
Number of nodes in the graph

T
im

e
(s

ec
on

ds
)

Exploration BFS DFS

Method CALDERA
1 core

CALDERA
5 cores

COIN+
LAMP2

Figure 1: Runtimes for CALDERA and COIN+LAMP on
graphs with various values of covariates p.

Benefit of CALDERA’s exploration scheme We gen-158

erate datasets with n = 50 samples represented by159

p ∈ [100 : 20000] covariates, and a graph connecting160

these covariates, to test the speed of our algorithm.161

As a baseline, we include an improvement on Sese162

et al. [2014], by combining COIN with the improved163

LAMP algorithm of [Minato et al., 2014]. Since164

CALDERA and COIN+LAMP2 both rely on the same165

statistical procedures (the identification of testable166

hypotheses with Fisher’s test), the set of significant167

hypotheses is the same regardless of the method. We168

provide more details on the simulation procedure169

in Supplementary S-4. In addition to COIN+LAMP2,170

we benchmark 3 versions of CALDERA. The first one,171

closest to COIN+LAMP2, is the DFS implementation.172

The second one is the BFS implementation, where173

we modify the enumeration order of the elements of174

C to promote pruning. The last is a parallelized BFS175

implementation, using 5 cores. The ranking in speed176

is uniform over all value of p, with COIN+LAMP2177

being the slowest, followed by the DFS and BFS im-178

plementation, and finally the parallelized version of179

CALDERA. For p = 20000, COIN+LAMP2 takes 2h20180

to run while the parallelized version of CALDERA took 5 minutes. Others simulation settings (see Supple-181

mentary S-4) provide the same speed ranking. For example, if n = 100, COIN+LAMP2 times out (two days182

threshold) before finishing while the parallelized version of CALDERA runs in 6 hours. Over all parameter183

values, the average ratio of runtime for COIN+LAMP2 over CALDERA BFS with 5 cores is 76. More details on184

memory usage and simulations settings can be found in section S-4.185

3.2 Bacterial GWAS186

We consider the n = 280 Pseudomonas Aeruginosa genomes used in Jaillard et al. [2018], along with their187

amikacin resistance phenotype. The De Bruijn graph is constructed using k = 31-mers, leading to a graph188

with over 2.3 million nodes. The full exploration of C is not computationally feasible, even for CALDERA.189

We therefore limited our search to the first 5 stages of the tree constructed on C. Exploring that space took190

approximately 5 hours to CALDERA with 4 cores. This search identified k0 = 2.8× 106 testable subgraphs for191

an FWER level α = 10−8. 35 of the testable subgraphs were significantly associated to amikacin resistance at192

this FWER level. We restricted ourselves to the 17 that were not fully included in another significant subgraph,193

and annotated the corresponding k-mers using blast [Altschul et al., 1990] against both the NCBI database194

and a resistance database provided with DBGWAS. The two subgraphs with lowest p-values are the only two195

confirmed resistance determinants identified by DBGWAS. DBGWAS identified these determinants—as its first and196

third hits—by testing individual k-mers and heuristically adding their neighbors. CALDERA, on the other hand,197

allows inference on the subgraph itself—corresponding to an entire gene or plasmid, paving the way for more198

powerful and principled bacterial GWAS. COIN+LAMP2 would return the same result as CALDERA, but was still199

exploring the tree structure with a value of k = 2.8× 105 (a tenth of the final value) after running for 9 days.200

4 Discussion201

This article presented CALDERA, an algorithm to enumerate all significant closed connected subgraphs.202

CALDERA scales to large datasets, relying on an efficient structure on C and an exploration scheme that203

leverages the pruning opportunity offered by discrete statistics. Future work will focus on incorporating204

pre-processing schemes before CALDERA that could compact the graph to both reduce its size and facilitate205

pruning by increasing the average |I(vj)|.206

4

References207

Magali Jaillard, Leandro Lima, Maud Tournoud, Pierre Mahé, Alex van Belkum, Vincent Lacroix, and208

Laurent Jacob. A fast and agnostic method for bacterial genome-wide association studies: Bridging the209

gap between k-mers and genetic events. PLoS genetics, 14(11):e1007758, 2018. ISSN 1553-7404. doi:210

10.1371/journal.pgen.1007758. URL http://www.ncbi.nlm.nih.gov/pubmed/30419019.211

R. E. Tarone. A Modified Bonferroni Method for Discrete Data. Biometrics, 46(2):515, jun 1990. ISSN212

0006341X. doi: 10.2307/2531456.213

Aika Terada, Mariko Okada-Hatakeyama, Koji Tsuda, and Jun Sese. Statistical significance of combinatorial214

regulations. Proceedings of the National Academy of Sciences of the United States of America, 110(32):215

12996–13001, aug 2013. doi: 10.1073/pnas.90.1.203.216

Shin Ichi Minato, Takeaki Uno, Koji Tsuda, Aika Terada, and Jun Sese. A fast method of statistical assessment217

for combinatorial hypotheses based on frequent itemset enumeration. In Lecture Notes in Computer218

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),219

volume 8725 LNAI, pages 422–436. Springer Verlag, 2014. ISBN 9783662448502. doi: 10.1007/220

978-3-662-44851-9_27.221

Felipe Llinares-López, Dominik G. Grimm, Dean A. Bodenham, Udo Gieraths, Mahito Sugiyama, Beth222

Rowan, and Karsten Borgwardt. Genome-wide detection of intervals of genetic heterogeneity associated223

with complex traits. Bioinformatics, 31(12):i240–i249, 2015. ISSN 14602059. doi: 10.1093/bioinformatics/224

btv263.225

Felipe Llinares-López, Laetitia Papaxanthos, Dean Bodenham, Damian Roqueiro, and Karsten Borgwardt.226

Genome-wide genetic heterogeneity discovery with categorical covariates. Bioinformatics, 33(12):1820–227

1828, 2017. ISSN 14602059. doi: 10.1093/bioinformatics/btx071.228

Jun Sese, Aika Terada, Yuki Saito, and Koji Tsuda. Statistically significant subgraphs for genome-wide229

association study. SDM, 47:1–7, 2014.230

Jun Sese, Mio Seki, and Mutsumi Fukuzaki. Mining networks with shared items. In International Conference231

on Information and Knowledge Management, Proceedings, pages 1681–1684, New York, New York, USA,232

2010. ACM Press. ISBN 9781450300995. doi: 10.1145/1871437.1871703. URL http://portal.acm.233

org/citation.cfm?doid=1871437.1871703.234

CE Bonferroni. Teoria Statistica Delle Classi e Calcolo Delle Probabilità. Pubblicazioni del R Istituto Superiore235

di Scienze Economiche e Commerciali di Firenze, 8:3–62, 1936. doi: 10.4135/9781412961288.n455.236

Mio Seki and Jun Sese. Identification of active biological networks and common expression conditions.237

In 8th IEEE International Conference on BioInformatics and BioEngineering, BIBE 2008, 2008. ISBN238

9781424428458. doi: 10.1109/BIBE.2008.4696746.239

Kazuya Haraguchi, Yusuke Momoi, Aleksandar Shurbevski, and Hiroshi Nagamochi. COOMA: A components240

overlaid mining algorithm for enumerating connected subgraphs with common itemsets. Journal of Graph241

Algorithms and Applications, 23(2):434–458, 2019. ISSN 15261719. doi: 10.7155/jgaa.00497. URL242

http://jgaa.info/vol.243

Shingo Okuno, Tasuku Hiraishi, Hiroshi Nakashima, Masahiro Yasugi, and Sese Jun. Parallelization of244

extracting connected subgraphs with common itemsets in distributed memory environments. Journal of245

Information Processing, 25(3):256–267, 2017. ISSN 18826652. doi: 10.2197/ipsjjip.25.256.246

David Avis and Komei Fukuda. Reverse search for enumeration. Discrete Applied Mathematics, 65:21–46,247

1993.248

S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic local alignment search tool. Journal of249

Molecular Biology, 215:403–410, 1990.250

T Uno, M Kiyomi, and H Arimura. Efficient mining algorithms for frequent/closed/maximal itemsets. In251

IEEE ICDM Workshop on Frequent Itemset Mining Implementations, 2004.252

R3: Announcing the next generation of Amazon EC2 Memory-optimized instances,253

2020. URL https://aws.amazon.com/about-aws/whats-new/2014/04/10/254

r3-announcing-the-next-generation-of-amazon-ec2-memory-optimized-instances/.255

5

S-1 Proofs256

S-1.1 Lemma 3: correctness of the closure257

Lemma 3 provides that the operator cl is well defined on connected subgraphs.258

Lemma 3. For any connected subgraph S of G, there exists a unique subgraph S ′ ∈ C such that I(S) = I(S ′)259

and S ⊆ S ′.260

Proof of Lemma 3 First let’s show that there exists S ′ ∈ C such that I(S) = I(S ′) and S ⊆ S ′. Let S ′ be a261

(inclusionwise) maximal connected subgraph containing S and such that I(S) = I(S ′). By maximality of S ′,262

for every edge (v1, v2) ∈ E with v1 ∈ S ′ and v2 /∈ S ′, we have I(S ′ ∪ {v2}) 6= I(S) = I(S ′), thus S ′ ∈ C.263

Now let’s show that such a subgraph is unique. Assume that there exits two different subgraphs S1 and S2 in C264

such that S ⊆ S1 and S ⊆ S2 with I(S) = I(S1) = I(S2). Since S1 6= S2, at least one of the subgraphs265

S1 \ S2 and S2 \ S1 is not empty. Assume without loss of generality that S1 \ S2 6= ∅. Since S1 is connected266

and since S1 ∩ S2 ⊇ S 6= ∅, there is at least one edge (u, v) with u ∈ S1 ∩ S2 and v ∈ S1 \ S2. This leads to267

a contradiction since the edge (u, v) is such that u ∈ S2, v /∈ S2 and I(S2 ∪ v) = I(S) = I(S2), which is in268

contradiction with S2 ∈ C.269

S-1.2 Lemma 1: P is a valid reduction270

Case if I(S) = J (S): Then, either S = ∅ which has trivially no parent by this reduction. Or all nodes of S271

contain exactly the same pattern. For any v ∈ S , S = cl(v). S is a root of our exploration. Its parent is ∅ ⊆ S .272

Note that, to avoid enumerating those roots more than once, we only start from vmax = maxS.273

Case if iS is defined: Then, iS ∈ I(S) so S
⋂
ViS 6= ∅ and iS /∈ I(S) so S \ Vi 6= ∅. Therefore, there is274

at least one connected component in S \ Vi. Moreover, any connected component of S \ Vi is included but275

not equal to S. From [Haraguchi et al., 2019], Lemma 1, we know that, if S ∈ C, any connected component276

of S \ Vi is also in C. So any connected component of S \ Vi can be defined as a parent of S. To identify a277

unique parent, we select the one with the highest node number, Sp. This proves that reduction defines a unique278

parent. It is a strictly smaller subgraph by inclusion. Indeed, note that since S \ Vi 6= ∅ and Sp ⊂
(
S
⋂
Vi
)
,279

then Sp ⊆ S.280

S-1.3 Lemma 2: conditions (C1-3) are necessary and sufficient for S = P(S ′)281

S-1.3.1 Proof that for any S ′, (S = P(S ′),S ′) verify (C1− 3)282

S ⊂ S ′ \ ViS′ so iS′ /∈ I(S). This proves (1). max{v′ ∈ S ′ \ ViS′} ∈ S by construction of the parent283

so max{v′ ∈ S ′ \ ViS′} ≤ maxS. Moreover, S ⊂ S ′ \ ViS′ so maxS ≤ max{v′ ∈ S ′ \ ViS′}. So284

max{v′ ∈ S ′ \ ViS′} = maxS, this proves (2).285

Suppose (3) is false. Then, we have v ∈ Ne(S)
⋂
(S ′ \ ViS′). S2 = cl(S

⋃
{v}) ⊂ S ′, maxS2 = max{v′ ∈286

S ′ \ ViS′} since S ⊂ S2 and S2
⋂
ViS′ = ∅ so S2 ⊂ P(S ′). But S2) S = P(S). This is not possible. So287

(3) is true.288

This proves the implication in the first sense.289

S-1.3.2 Proof that for any (S,S ′) that verify (C1− 3), S = P(S ′)290

We consider two closed connected subgraph S,S ′ ∈ C that verify (1-3). We want to prove that P(S ′) = S.291

Point (1) insures that S ⊆ (S ′ \ ViS′). Since S ∈ C and contains the maximal node (from (2)), this ensures292

that S ⊆ P(S ′).293

Suppose S (P(S ′). Then, P(S ′) \ S 6= ∅. In particular, since S and P(S ′) are both connected subgraphs,294

there exists v′ ∈
(
P(S ′) \ S

)⋂
Ne(S). Since this neighbour is in P(S ′), it is also in S ′ \ ViS′ }. That is295

impossible from (3). So S = P(S ′). (Note that point (3) includes the fact that iS′ ∈ I(v)).296

This proves the converse implication.297

S-1.4 Theorem 1: Algorithm 1 correctly inverts the reduction298

We consider a subgraph S ′ ∈ S and its parent S = P(S ′).299

We first show two lemmas300

Lemma 4. For two subgraphs S1,S2 ∈ C, if S1 ⊂ S2, then iS1 ≤ iS2 .301

S-1

Proof:

S1 ⊂ S2 =⇒ I(S1) ⊂ I(S2) and (1)
S1 ⊂ S2 =⇒ J (S2) ⊂ J (S1) (2)

(1) and (2) =⇒ (I(S1) \ J (S1)) ⊂ (I(S2) \ J (S2)) (3)
=⇒ iS1 ≤ iS2 (4)

Lemma 5. For a subgraph S ′ ∈ C such that S = P(S ′) 6= ∅, any subgraph S2 ∈ C that verifies:302

• S (S2303

• S2 ⊂ S ′304

is a child of S, that is P(S2) = S305

Proof: We know that S (S2 so Ne(S)
⋂
S2 6= ∅. Since S2 ⊂ S ′, Ne(S)

⋂
S2 ⊂ S ′ so, from (3) for S,S ′,306

we have Ne(S)
⋂
S2 ⊂ ViS′ . So iS′ ∈ I(S2). iS′ /∈ I(S) so iS′ /∈ J (S2). Therefore, iS′ ≤ iS2 . But since307

S2 ⊂ S ′, iS′ ≥ iS2 . So iS′ = iS2 . Then, we know that S,S2 verifies (1). Since S (S2, we also have (2). Fi-308

nally {v′ ∈ S2\ViS2
: v′ ∈ Ne(S)} = {v′ ∈ S2\ViS′ : v

′ ∈ Ne(S)} ⊂ {v′ ∈ S ′\ViS′ : v
′ ∈ Ne(S)} = ∅.309

This proves (3). Since we have (1-3), we know that P(S2) = S.310

311

Main proof: Now let us prove the main result: Assume that we cannot generate S ′ with the procedure from312

algorithm 1. Let’s then consider the largest S ′′ (S ′ generated with the algorithm 1, that is the one with the313

largest number of nodes. Since S = P(S ′), we at least have Sd ⊂ S ′ so at minimum we can take S ′′ = Sd.314

By assumption, S ′′ (S ′. Therefore, there exists a neighbour v ∈ Ne(S ′′)
⋂
S ′ since S ′ and S ′′ are connected315

subgraphs. Note that we know that iS′′ = iS′ by construction. Moreover, (S,S2 = cl(S ′′
⋃
{v})) verify (1-3)316

by Lemma 2.317

Case 1: I(cl(S ′′
⋃
{v})) does not include any pattern of forbidden (S ′′): Since S2 ⊂ S ′, iS2 ≤ iS′ .318

However, since S ′′ ⊂ S2, iS2 ≥ iS′′ = iS′ . So iS2 = iS′ . Moreover, we already know that (S,S2) verify319

(1-3). That means we can create S2) S ′′ which contradicts our assumption that S ′′ is the largest closed320

subgraph strictly included in S ′ that could be generated.321

Case 2: I(cl(S ′′
⋃
{v})) includes one of the pattern of forbidden (S ′′): We note v1, . . . , vl the sequence322

that created S ′′ from Sd. At one point in that process, we added a pattern to forbidden(S ′′) that is now323

contained in I(cl(S ′′
⋃
{v})), let’s say when adding vk. This pattern was linked to another equivalence324

group. If we consider v′ a node from that group, we will then construct a subgraph using the sequence325

v1, . . . , vk−1, v
′, vk, . . . , ...vl. Note that since at each new addition, the constructed graph is included in S2,326

it’s also included in S ′. Moreover, each one contains S and a node from ViS′ by construction (since it contains327

Sd). So, using Lemma 2, we know that those additions all respect (1-3), i.e they are valid additions according328

to our algorithm. This way, we can create a subgraph that contains S ′′ and v′ with our procedure. This329

contradicts our assumption that S ′′ is the largest closed subgraph strictly included in S ′ that could be generated.330

331

This proves that all S ′ will be generated from S and therefore that we have properly inverted the reduction.332

S-2 Efficient implementation of CALDERA333

S-2.1 Full algorithm334

Algorithm S-1 explores C through a BFS traversal of the tree defined by the reduction P , exploiting Algorithm 1335

(L.15) to invert the reduction and using this exploration to apply the Tarone testing procedure described in336

Section 2.1 (L7-12, 14), before finally testing the testable CCS>(L21-25).337

S-2.2 Memory footpring338

We consider a subgraph S ′ created following Algorithm 1, in the second case. We therefore have S,Sp such339

that: P(S ′) = P(S) = Sp and iS′ = iS . After creating S ′, we explore its children, with an itemtable T . All340

elements of Children(S ′,Sp, iS′ , T) will have a pattern which includes I(S ′). Moreover, by definition of341

the equivalence groups, we already know that {I ∈ T : I ⊂ I(S ′)} = ∅. Therefore, when constructing342

S ′′ ∈ Children(S ′,Sp, iS′ , T), only the elements in I(S ′′) \ I(S ′) need to be considered.343

S-2

Algorithm S-1 List significant closed connected subgraphs

1: procedure LIST_SIG_CLOSED_SUBGRAPHS(G, α)
2: Q← Children(∅, ∅,NULL, ∅)
3: R ← ∅
4: k ← 1
5: while Q 6= ∅ do
6: S ← Dequeue(Q)
7: if p?(S) ≤ α/k then
8: R ← R∪ {S}
9: end if

10: if
∣∣R∣∣ > k then

11: k ← k + 1
12: R ← {S ∈ R : p?(S) ≤ α/k}
13: end if
14: if p̃?(S) ≤ α/k then
15: for S ′ ∈ Children(S,S,NULL, ∅) do
16: Enqueue(S ′, Q)
17: end for
18: end if
19: end while
20: Solutions← ∅
21: for S ∈ R do
22: if p(S) ≤ α/k then
23: Add S to Solutions
24: end if
25: end for
26: return Solutions
27: end procedure

Following Uno et al. [2004], we store T as344

a matrix of binary patterns. Therefore, some345

columns can be deleted without loss of infor-346

mation: in Line 13 of algorithm 1, we only347

keep the columns that are not in I(S). As the348

Children function is called recursively, the349

itemtable T will grow in the number of pat-350

terns saved (i.e number of rows) but the mem-351

ory footprint of each pattern will be smaller352

(i.e fewer columns).353

S-3 Benefit354

of breadth-first search355

S-3.1 General intuition356

In the DFS search, at any level, even if the357

CCSs visited along a branch do increase k358

and therefore lower the testability threshold,359

all the other CCSs of the level will need to360

be visited regardless of their testability.361

By contrast, in BFS, the increase of k gained362

by visiting all CCSs of the same level in the363

tree will lower the threshold α/k for all CCS364

at the next level, making more branches prun-365

able.366

Therefore, the breath-first search does prune367

the subgraph much more efficiently.368

S-3.2 A simplified scenario369

We consider a very simple graph with p = 3 nodes, J = 1 population and n = 12 samples. The graph is370

displayed in Fig S1a. Using the reduction from CALDERA, we generate a tree structure on C, displayed in371

Fig S1b.372

Then we can explore this structure in depth-first or breadth-first, while pruning using α = 1. The order373

resulting from an exploration in depth-first can be found in Table S1 and the order fom the exploration in374

breadth-first can be found in Table S2. In this simple setting, exploring in breadth only visits 4 subgraphs375

while exploring in depth visits 7. This is because the BFS enumerates testable subgraphs more quickly, thereby376

increasing k and lowering the threshold, which means that the branch starting at {v1} is pruned earlier in the377

exploration.378

Subgraph explored Number of subgraphs explored Value of the threshold Testable subgraphs
{v1} 1 .15 {{v1}}
{v1, v2} 2 .15/2 {{v1}, {v1, v2}}
{v1, v2, v3} 3 .15/2 {{v1}, {v1, v2}}
{v1, v3} 4 .15/3 ∅
{v2} 5 .15/3 {{v2}}
{v2, v3} 6 .15/3 {{v2}, {v2, v3}}
{v3} 7 .15/3 {{v2}, {v2, v3}, {v3}}

Table S1: Order of exploration of the elements of C while exploring depth-first

S-3.3 A more general setting to understand why BFS is more efficient than DFS379

We consider a very simple graph model where, for v ∈ V and i ∈ {1, . . . , n}, i ∈ I(v) ∼ Binom(prop) and380

the patterns are independent across nodes . We have no population structure, which means that we consider381

Fisher’s exact test. For a given level α, we want to compute f(α, prop) = P(p?({v}) > α,∀v ∈ V), that is382

the probability that no subgraph is testable at the first stage of our tree on C.383

S-3

Subgraph explored Number of subgraphs explored Value of the threshold Testable subgraphs
{v1} 1 .15 {{v1}}
{v2} 2 .15/2 {{v1}, {v2}}
{v3} 3 .15/3 {{v2}, {v3}}
{v2, v3} 4 .15/3 {{v2}, {v2, v3}, {v3}}

Table S2: Order of exploration of the elements of C while exploring breadth-first

(a) A simple graph example with p = 3, J = 1 and
N = 12 which we explore using CALDERA with

pruning, and α = .15

(b) Order on elements of C from the graph in a),
according to the reduction of definition 2

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Probabilty of a one

P
ro

ba
bi

lit
y

th
at

 a
 s

ub
gr

ap
h

is
 1

−
te

st
ab

le

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Probabilty of a one

P
ro

ba
bi

lit
y

th
at

 a
 s

ub
gr

ap
h

is
 p

ru
na

bl
e

Stage 1 2 3

(c) n = 100, p = 100, α = 10−4. For a simple model described in S-3.3 where i ∈ I(v) ∼ Binom(prop), we plot the
probability that any subgraph is 1-testable or prunable as a function of prop

Figure S1: Simple examples where the search in breadth-first is much more efficient that depth-first

Since we consider Fisher’s exact test, there is a bijection between p?({v}) and x{v} so p?({v}) > α =⇒384

x{v} ≥ σ(α). Moreover, x{v} ∼ B(prop, n), so f(α, prop) = 1−
(
FB〉\om(prop,n)(σα)

)p
with FB〉\om(prop,n)385

the cumulative distribution function of the binomial (prop, n). Since the nodes are independent, the distribution386

of xS at any stage of the tree can be computed by recursion. We furthermore assume that the graph structure is387

such that the number of closed subgraphs is s× p at stage s.388

In Fig S1c, we display the probability that any subgraph is 1-testable or prunable at stage s, for s ∈ {1, 2, 3},389

p = 100 and α = 10−4.390

S-4

For most of the range of values, there is at least one testable subgraph in the first stage. So, by exploring in a391

BFS manner, we start the second stage with a much lower threshold (i.e., a much higher value of k) which392

leads to more pruning. For very low values of prob, there might be no testable subgraphs at the first stage but393

there will be at the second stage, which still justifies an exploration in depth. Note that for large p, we can394

see that there is no testable subgraph at the stages 2 and 3. That is because all such subgraphs have a pattern395

that is too large. While there may be not testable subgraphs, there are many prunable ones. In that case, an396

exploration in breadth-first or depth-first would be identical.397

This example simplifies two aspects which have opposite effects. The first is that, in practice, the probability398

of i ∈ I(v) is of course not uniform across the graph. It is a distribution with much heavier tails which means399

that, even if the average number of 1 might be small, it is still quite likely that at least one subgraph is testable.400

The second is that the patterns of neighbouring nodes are correlated. As such, the patterns cannot increase by401

as much between stages, which limits both the increase in testable pattern discovery, and the pruning.402

S-5

S-4 Simulations403

S-4.1 General simulation settings404

For given values of n (number of samples) and p (number of nodes), we first generate n samples with405

phenotype yi ∈ {0, 1} such that P(yi = 0) = prop (user defined parameter). Then, we generate p nodes.406

10% of the nodes will be associated with the phenotype. For each node in the remaining 90%, we randomly407

generate 3 edges between this node and another in the 90%. The average degree is therefore 6. For those nodes408

vj , the associated pattern I(vj) is a random vector such that P(i ∈ I(vj)) = 0.5.409

Then, we generate the remaining 10% of the nodes associated with the phenotype. We first generate associated410

patterns Isig such that P(i ∈ Isig|yi = 1) = 0.95 and P(i ∈ Isig|yi = 0) = 0.05. Then, those patterns are411

split into 10 significant nodes sigj such that P(i ∈ I(sigj)|i ∈ Isig) = 0.9 and I(
⋃
j∈[1...10]) = Isig .412

S-4.2 Parameters for various scenarios413

We increase p until COIN+LAMP2 times out (sometimes we went a little further to continue investigation the414

behaviors).415

Scenario 1 2 3 4
n 100 50 100 100

prop .5 .5 .2 .2
α .05 .05 .05 10−4

timeout (days) 2 1 1 1
max value of p 2× 104 2× 104 2× 103 5× 104

Table S3: Parameter values for the simulations

S-4.3 Results on all scenarios416

All computations were run on a r3.4xlarge AWS machine with 16 vCPUs (8 physical ones) and 122GiB[AWS,417

2020]. We stop every method once it runs for more than timeout. We also stopped running the entire scenario418

once we have reached timeout for COIN+LAMP2 (expect for scenario 3 where we continued further to study the419

behavior of the various modes of CALDERA.420

S-4.4 Memory requirements421

We also launched scenario 2 while monitoring memory usage for COIN+LAMP2, CALDERA BFS and CALDERA422

DFS. CALDERA DFS uses 1/3 of the peak memory of CALDERA BFS. This is expected since the tree structure423

that is explored scales in p in breadth but in n << p in depth. Memory-wise, CALDERA BFS is on par with424

COIN+LAMP2, which relies on a DFS search. This shows that the use of local itemset tables offers memory425

gains that are enough to offset the exploration in breath, while providing large speed gains. This also suggests426

that hybrid explorations might be even better at navigating the memory-speed trade-off.427

S-5 Background on the minimal p-value428

S-5.1 Minimal p-value429

Variable i ∈ I(S) i /∈ I(S) Rows totals
yi = 1 aS,j n1,j − aS,j n1,j
yi = 0 xS,j − aS,j n2,j − xS,j + aS,j n2,j

Cols Totals xS,j nj − xS,j nj
Table S4: Association table in community j for subgraph S, used for the CMH test.

S-6

timeout

timeout

timeout

timeout

3 4

1 2

100 1000 100 1000

100 1000 10000 100 1000 10000

1e+01

1e+03

1e+05

1e+01

1e+02

1e+03

1e+04

1e+05

1e+01

1e+02

1e+03

1e+04

1e+05

1e+02

1e+03

1e+04

1e+05

Number of nodes in the graph

T
im

e
(s

ec
on

ds
)

Exploration
BFS DFS

Method
CALDERA
1 core

CALDERA
5 cores

COIN+
LAMP2

Figure S2: Runtimes for CALDERA and COIN+LAMP on graphs with various values of covariates p and various
values of the simulation parameters.

0

50

100

0 5000 10000 15000 20000
Number of nodes in the graph

P
ea

k
m

em
or

y
us

ag
e

(G
b)

Exploration BFS DFS

Method CALDERA
1 core

COIN+
LAMP2

Figure S3: Peak memory usage for CALDERA and COIN+LAMP on graphs with various values of covariates p.

S-7

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●−15

−10

−5

0

20 30 40 50
aS

lo
g 1

0(p
(S

))

Figure S4: Finite numbers of possible p-values (log scale) for a fixed value of n1 = 50 and xS = 64. Using
the notation from table S4, with J = 1, n1 = 50, n = 100 and xS = 64, the p-value of the χ2 test is

computed for all possible values of aS . Since there are only a finite number of possible aS values, there are a
finite number of possible p-values, and therefore a smallest one. This minimal p-value can be computed from

xS , n1 and n alone and is ∼ 10−15

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−20

−15

−10

−5

0

0 n1 n 2 n2 n

xS

lo
g 1

0(p
* (S

))

Figure S5: Minimum p-value as a function of xS for fixed values of n1 = 25 and n = 100. Using the notation
from table S4, with J = 1, n1 = 25, n = 100, the minimal p-value p∗(S) of the χ2 test is computed for all
possible values of xS . For xS ≥ max(n1, n2), the minimal p-value is strictly increasing. If we reach that

stage, we can prune the graph and stop the exploration in that direction. Indeed, if S ′ ⊇ S then xS′ ≥ xS . So
if p∗(S) > α

k , we know that p∗(S ′) > α
k without computing it.

S-8

