
Lab 3 - Parallelizing k-means Stat 215A, Fall 2017

Hector Roux de Bézieux

October 23, 2017

1 Similarity of clustering

First, we implement the computation of the similarity matrix in. We compute the Jaccard coefficient for
the two labeling from kmeans. The Jaccard coefficient is N11

N11+N10+N01
. The algorithm is efficient in memory

usage since we never store any similarity matrix . We only compute the similarities on the spot and store
the result in the summary statistics N11, N01, N10. Memory usage is in O(n) instead of being in O(n2). In R,
this is computationally slower than matrix product since R is optimized for such operations, but the reduced
memory usage makes up for it. We can see that, for 9000 samples, the algorithm run in 1s (see the table
below).

We can also code the same algorithm in C++ and compare the relative speed. The similarity algorithm in
C++ is stored in the extra/ folder, in the Similarity.cpp file. We select 20% of the data (around 9000
samples) twice independently, run k-means on each set with k = 2 and compare the two labeling with the
two similarity algorithms. We verify that both give the same result. Then, we use the microbenchmark
package. Both algorithm are ran 100 times and we compare the time it takes to run them both.

Unit: milliseconds

expr min lq mean

similarity_cpp(L1_com, L2_com) 1.818082 1.828008 1.996282

similarity_R(L1_com, L2_com) 1514.735300 1582.496765 1634.459596

median uq max neval

1.86099 2.074798 3.237957 100

1606.36964 1650.118171 2420.142180 100

The R algorithm run takes roughly 103 more time than the C++ one.

2 Parallel Computing

First we can code the inner loop. For given K, N and m, we sample twice a fraction m of the data set, run
the k-mean algorithm with k clusters, compute the similarity score and repeat those steps N times. All that
is done in a function called SubSample that takes as input k, N, m and the data set X and returns a N × 1
vector of scores.

Then we loop over the number of clusters, k, from 2 to 10. This is the part that we parallelize. The code is
present in the .Rnw file with the option eval = FALSE which means it is not run when the pdf is compiled.
The real code that was use to produce the latter output is in the R/ folder.

1

3 RESULTS

3 Results

First we can plot the density kernels for all the similarity scores of given number of clusters. This is Fig 1.
A first comment is that even for k = 2, the maximum score, 0.29, is quite low. This probably mean that our
clustering is not very strong. However, we can already see a clear cut between k = 2 and k = 3, between k = 3
and k = 4 and between k = 4 and the rest. This would lead to choosing either k = 2 or k = 3. With only
that plot, k = 3 might be a more reasonable choice since the score is really consistent across all subsamplings.

0

200

400

600

0.1 0.2

score

de
ns

ity

Number of clusters
2
3
4
5
6
7
8
9
10

Figure 1: Kernel density plots of the similarity score over 100 subsamplings, for various number of clusters

We can also reproduce the figure 3 of the Ben Hur paper:

0.05 0.10 0.15 0.20 0.25 0.30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

similarity

cu
m

ul
at

iv
e

Figure 2: of the cumulative distributions for increasing values of k

As advised in Ben-Hur et al. [2001]., we want to select a cluster with very stable and very high similarity
score. For k = 3, the score is very constant. We can imagine that, each type, a specific subset of points are
correctly clustered while the rest of the points are not. So a small portion of the dataset clusters in 3 groups

2

3 RESULTS

while the rest doesn’t cluster at all. Therfore, selecting k = 3 could make sense.

However, suppose we have k clusters assigned at random. For n large enough, we have

N11 = n×P(2 points are assigned the same cluster twice) = n
k2 . Likewise, N01 = n(k−1)

k2 = N10. So the
Jaccard Coefficent is 1

2k−1 . Therefore, when assigning at random, the Jaccard Coefficent has an expected
value of 0.2 when k = 3. This is higher than what we have here!! However, since the similarity score is very
stable, we can assume that the clusters are partly not assigned at random but given that the score is lower
than its expected value for random assignments, the clustering is probably quite poor.

3

