
Lab 4: Cloud Data - Stat 215A, Fall 2017

Briton Park
Hector Roux de Bézieux
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Abstract

This laboratory project aims to detect clouds over the arctic regions. The MISR sensor aboard the
NASA satellite Terra captures radiance levels from locations and transform them into images. Using
those radiance levels, this project develops several classifiers to predict the presence of clouds at the pixel
level. Those classifiers are run using cross-validation and evaluated based on AUC. The best classification
technique is then chosen and the evaluated to assess performance on future new images. We find that
the feed forward neural net is the most accurate and most stable classifier

1 Introduction

As global warming becomes more and more a reality, specific climate watch on the arctic region becomes of
crucial importance. Indeed, the poles are one of the regions where global warming has the most impact. In
turn, retreating sea ice also accelerate global warming. As ground observations are challenging due to diffi-
culties in access and extreme temperatures, being able to collect climate data from satellites would greatly
help to study cloud coverage, both locally and across the whole region.

The aim of this study is therefore to use satellite images and develop a proper classifier to detect the presence
of clouds, pixel per pixel. To obtain such result, after proper exploratory data analysis, we train several
classifiers, compare them on appropriate metrics (see below) and select the best method for further analysis.
For this lab project, we used a range of techniques that will be described in greater detail below: k-nearest
neighbors, logistic regression, random forest and feed-forward neural net.

2 EDA

2.1 The data

The data at disposal for training our classifiers consists of 3 images, seen in Figure 1. For each image, we
have expert label for every pixel, with the label ”high certitude cloud”, ”high certitude ground / ice” and
”unknown”. All pixels also come with 8 measurements of intensity: NDAI, SD, CORR, DF, CF, BF, AF
and AN. The first three features come from the Multiangle Imaging SpectroRadiomter (MISR). NDAI is
a normalized difference angular index that characterizes the changes in a scene with changes in the MISR
view direction, CORR is the correlation of MISR images of the same scene from different MISR viewing
directions, and SD is the standard deviation of MISR nadir camera pixel values across scenes (Yu 2008).
DF, CF, BF, AF, and AN are radiances of different angles obtained from the MISR.

2.2 Relationships between measurements

We visually explored the relationships between radiances of different angles between cloud and non-cloud
points. Due to constraints on the report size, we only include scatterplots of the relationship between the

1



2.2 Relationships between measurements 2 EDA

(a) Expert label on Image 1 (b) Expert label on Image 2

(c) Expert label on Image 3

Figure 1: Expert labels of all images

radiances DF and CF, BF and CF, and AN and AF (Figure 2). We found that for both cloud and non-cloud
points, there were strong positive correlations between the different angle radiances. However, the relation-
ships were tighter for non-cloud points even though there are less cloud points (80,981) than non-cloud points
(127,080). Additionally, in the scatterplots of the first two sub figures (Figure 2), there seems to be two over-
lapping groups of points for the cloud points. This structure in the data is not present in the non-cloud points.
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Figure 2: Scatterplot of different radiance measurements

We also quantitatively assessed the relationships between the different radiances for the cloud and non-cloud
points. For the non-cloud points, the average correlation between all pairwise radiances was 0.936, while the
average correlation between all pairwise radiances for the cloud points was 0.803. These findings agree with
our visual observation of the radiance relationships. Because there are strong positive relationships between
the radiance angles for both cloud and non-cloud points, there are redundancies in the data that can be
removed for modeling purposes.

We then assessed the NDAI, CORR, and SD variables using the similar methods. From the scatterplots
(Figure 3), we can see that there are slightly positive relationships between the variables for both the non-
cloud and cloud points. The relationships for the cloud points were much weaker than those of the non-cloud
points. For the relationships between NDAI with CORR and SD (Figure 3), we can see that the variance
in the relationship becomes greater as the NDAI variable value becomes greater than two for the non-cloud
points. The pairwise correlations between the variables for cloud points was 0.53 and for non-cloud points
was 0.621. These values agree with our visual findings of the relationships between these variables.
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Figure 3: Scatterplot of NDAI, CORR and SD versus one another

3 Modelling

3.1 Reducing the number of features

To assess whether these variables would be helpful in classifying cloud vs non-cloud for the points, we created
boxplots using NDAI, CORR, and SD (Figure 4). The variables seem promising for classification, because
they had significantly higher values for the cloud points than the non-cloud points. The NDAI variable seems
especially useful due to the difference of the 25th, 50th, and 75th percentile values between the cloud and
non-cloud points with respect to the range of the values of NDAI. To assess whether these variables are more
useful than the radiance values for classification purposes, we will need to use more quantitative methods.

To find the best 3 predictors out of the radiances, NDAI, CORR, and SD, we used forward step-wise regres-
sion. This method runs regression models starting with the null model. The model then tests the addition
of each variable against the Akaike Information Criterion (AIC). The variable that leads to the lowest AIC
is chosen. This process is iterated until the model fit stops improving. The AIC is an appropriate criterion
for model selection since it related to the likelihood of the model with an added penalty term on the number
of model predictors. The model with the lowest AIC is preferred.

We ran forward step-wise regression and found that the model with only 3 predictors included NDAI, CORR,
and SD variables. Note that this does not mean that the best model with 3 predictors is this particular
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Figure 4: Boxplots for NDAI, CORR, SD and AN for cloud versus non-cloud points

model, because forward step-wise regression is a greedy algorithm. However, it is an approximation and is
more efficient than comparing all possible models with 3 predictors. Thus, the results imply that the best 3
predictors for classifying cloud vs non-cloud points do not include the radiance angles.

3.2 Adding neighbors information

To improve the accuracy of our model, we can also take into account the nearest physical pixels. The as-
sumption is that a pixel next to a pixel labelled ”cloud” is much more likely to be labelled ”cloud” as well,
and likewise non ”non-cloud” labels. This assumption is based on the observations on Figure 1: clouds never
occupy only a few pixels.

Therefore, we look at the 4 nearest neighbors (using euclidean distance on x and y). Expect on the sides of
the images, those points will be those directly on top, on the left, the right and the bottom of the considered
pixel. We therefore add the measurements of all four neighbors as information to the pixels. As we will see
below, our cross-validation method ensures that this will not lead to upper bias.

We therefore trained all the classifiers both with and without neighbors information.

3.3 Description of classifiers

We developed four classification models to test the presence of clouds: logistic regression, neural networks,
random forest, and k-nearest neighbors. We included either all the variables or the 3 selected above in the
modeling to be able to compare. Using all features was consistently worse (expect from random forest where
it did not matter). Therefore, we will not report those results hereafter.

• Logistic regression assumes that there is no multicollinearity in the data. It is clear that there is
multicollinearity in the data, especially in regard to the different radiance angles. However, we chose
not to fix this issue, because we are interested primarily in prediction and not inference in this report.
Thus, we will avoid inferring how the individual predictors affect the response from our model. This
method also assumes that the error terms and observations are independent. However, we can see from
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the raw images that this assumption is also broken, because points that are neighbors are more likely
to have the same label. Thus, we should not use the logistic regression model for interpretability and
use it for only prediction purposes.

• K- nearest neighbors assumes that the closest two points are using euclidean distances on the
measurements, the more likely they are to be of the same type (cloud or not cloud). This assumption
can be retrospectively checked after running the KNN algorithm. If we get a low error rate, this
validate the assumption. We ran the algorithm for k ranging from 3 to 7 and did not notice much
difference so we only report the results for k = 5.

• Random forest is even less parametric but also ignores the multicollineairy of the data. Once again,
those assumptions can be verified by the accuracy of the results. We also notice that a forest of 60
trees is enough to reach the asymptotic error rate.

• Neural networks on the other hand, do not place any assumptions on the data, error, or response.
Thus, there is nothing to test for this method.

3.4 Cross-validation and selection of the best model

To test our methods, we chose to use something similar to cross validation in order to evaluate the meth-
ods. To choose the best method out of the ones we have applied, we cut up each of the images into 9
blocks and created 9 sets. Each testing split contained 2 out of the 9 blocks from each image and the train-
ing split contained the remaining 7 blocks. The blocks were randomly chosen to be in the test and train splits.

Validation was done this way, because if we randomly partitioned the points in the images into training and
test splits, it could be the case that a neighbor of a point in the testing split was in the training split. Thus,
the methods would do better than is expected when testing on an entirely new image. Splitting the images
into blocks in this way would alleviate some of this problem. We only did 9 out of all 36 possible distinct
pairs for computational reasons, as some models are quite long to run. The code to reproduce those sets is
available in the folder R/CV/

To evaluate our models, we chose to use the AUC metric of the ROC curve. The AUC is a metric where
a perfect model would have a value of 1, and a randomly guessing model will have a value of 0.5. It is
calculated using the ROC curve which visualizes all possible classification thresholds and determines the
discrimination ability of the model by assessing its sensitivity and specificity.
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4 Selecting the best model

4.1 Note : Reproducing the results

The code to recompile all results are present in the R/classifiers/ folder. However, due to the length of
computation, they are not reproduced here. Only logistic regression can be run easily on a local machine.
The results are stored in the result.txt file and contain the AUC for all methods and parameters.

4.2 results

Model Type AUC
Logistic Selected features 0.90
KNN Selected features Neighbors 0.91
Logistic Selected features Neighbors 0.93
FFN Selected features 0.93
KNN Selected features 0.94
Random Forest Selected features 0.95
Random Forest Selected features Neighbors 0.96
FFN Selected features Neighbors 0.96

There are a few observations to make from the table.

• The results are all above 0.89 for every classifiers so we always do quite better than random guess. The
best classifiers score at 0.96, which mean we have high accuracy for those classifiers.

• The addition of the features of the neighbor points really change the results. Only for random forest
do we have very consistent results. The biggest difference is for KNN.

• Finally, the less assumption we put on the model, the bigger the AUC. As we could have expected,
the models under their respective optimal choices of parameters always perform in the following order
(from worst to best): logistic, KNN, random forest and neural net.

However, the first few classifiers are really close and the mean AUC is not enough to allow us to pick the
best. Looking at the variance to see which is the most stable might be interesting but the variance of the
two best models differ by only 0.7%. Therefore, we look at the boxplot of AUC scores across all tested CV
sets, in Figure 6.

As we can see, we have a wide variation depending on the CV set being considered. We can also see that
the two set where the classifier performs the worst are always set 4 and 5. When we look at those set, we
can see that they both contain square 4 of the images, which is the top middle square. It is probable this
location is really hard to predict for at least one of the images.

Because the neural net clearly outperform the random forest on those two sets, we pick the neural net
as our best classifier.

5 Result on the best model

5.1 Cross-validation on the best model

We chose to use cross validation with respect to the image to assess how well our best model does. Three cross
validation sets were created by leaving out image 1, image 2, and image 3 for sets 1, 2, and 3, respectively.
This was done because we want to see how well our final model would perform on an entirely new image.
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KNN Logistic

Random Forest FFN
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Figure 5: AUC results for all classifiers

5.2 Best model details

As mentioned above, the neural network using the features of the neighboring points is the best model. The
neural network model is a feed forward neural network with 5 sets of inputs, which were the feature points
for the 5 points (original + 4 neighbors) used for each observation (See supplementary information for more
information). This model has an input layer for each of the feature points, an additional dense layer with
250 hidden nodes that takes input from the 5 input layers and an output player of 125 nodes.

To assess the convergence of the algorithm, we used a remote user-interface server from deeplearning4j’s
functionality which obtains details of the training process. From the interface, we obtained a plot of the
training iteration number against the model scores using the first cross validation set of the first two images
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as an example (Figure 6). We note that the scores are somewhat noisy in the first 30,000 iterations and
become more stable past 35,000 iterations which gives evidence that the model converges.

Figure 6: Iterations vs model scores

We then studied the misclassification errors of the neural network. To do this we plotted the misclassified
points along with the correctly classified points for each of the images by training on the other two images
(Figure 7). To classify the points, we found the best threshold value to convert probabilities into labels.
From the images, we can see that there are specific places where the neural network fails to classify the
points well. For example, we can see that most of the points in the region of ice in the bottom of image 1 are
misclassified. In image 3, most of the isolated regions of ice are misclassified. Furthermore, the neural net-
work seems to do much better at classifying points with the cloud label correctly than for points with ice label.

We also predicted the unlabeled points for each of the images by training on the other two images (Figure
8). We can see that for the most part most points are classified similarly as their neighbors and that there
are distinct regions of ice and snow in image 2. In images 1 and 3 there are more regions where many points
are classified as ice and cloud. Thus, it seems that the model does the best on image 2, since we expect
points of ice and cloud to comprise continuous regions of ice and cloud.

To quantitatively assess the missclassification, we calculated the percentage of misclassified examples for
cloud and non-cloud points. For image 1, 2, and 3, the percentages of errors for cloud points were 3, 2, and
5 percent respectively. The corresponding percentage of errors for non-cloud points were 11, 7, 26 percent,
respectively. So, as can be seen in the images, we do better at predicting cloud label than non-cloud label.

We then computed the percentage of error for points that had at least one unlabeled neighbor but were
not unlabeled themselves (i.e ”border” points). For images 1, 2, and 3, these were 7, 17, and 33 percent,
respectively. We then compared these percentages with the percentage of error for points that had all labeled
neighbors. For images 1,2, and 3 these were 0.9, 5, and 17 percent respectively. Thus, we see that for images
2 and 3, the error percentages were higher than the case where at least one neighbor is unlabeled. For image
1, these errors were very close. Thus, it gives some evidence that ”border” points are harder to classify, as
can be expected from Fig 8.
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(a) Expert label on Image 1 (b) Expert label on Image 2

(c) Expert label on Image 3

Figure 7: Misclassified labels on images
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(a) Expert label on Image 1 (b) Expert label on Image 2

(c) Expert label on Image 3

Figure 8: Assessing labels for unlabeled points
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6 CONCLUSION

6 Conclusion

With our analyses, we believe our model would work well on future data. We tested our model using entire
images that it has not been trained on and have confirmed that it generalizes well. In addition, because we
only train the model on at most 2 images, we believe it will perform better on future data since we would use
the full available data (3 images) to train the model. Furthermore, we would expect our model to perform
better on points with cloud labels. Future work could test whether different submodels of the feature set
would perform better and whether averaging predicted labels of the neighboring points as well as the original
would serve as a good predictor.
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