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Introduction



Motivation

Current format of DBGWAS has two limitations:

• Need to select an nh parameter to define the neighborhood (a).

• Low power to detect complex structures, as a gene cassette in (b).

(a) (b)

Figure 1: [Jaillard et al., 2018]
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Motivation (continued)

We also want to preserve strong features of DBGWAS

• Correcting for population structure.

• Remain reference-free as long as possible.

• Discover significant SNPs, gene cassettes or even species.

• Good interpretation and visualization tools.
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Approach and notation



Approach

Instead of testing at the node level and trying to combine in a heuristic

manner, test all possible subgraphs.
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Notation

We have a set of n observations D = {Gi , yi}ni=1, where

• Gi is a graph (part of the full k-mer graph)

• yi is a binary phenotype.

We denote by G = Un
i=1Gi , the full k-mer graph. For every subgraph

H ∈ G, we note zi,H = (H ∩ Gi 6= ∅) and zH = (z1,H, . . . , zn,H).

For all H ∈ G, we want to test zH ⊥ Y .
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Tarone’s trick



Why use Tarone’s trick

Testing all subgraphs in a naive manner is not possible. The number of

tests to run is much too large

1. to be computationally tractable.

2. to give reasonable power to any test.

Using Tarone’s trick Tarone [1990], we can solve both issues
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Tarone’s trick in an example

Fisher’s exact test for a two-by-two table:

Variable Favors soccer Favors rugby Rows totals

Comes from the south 6 5 10

Comes from the north 8 1 10

Cols Totals 14 6 20

Conditional on the marginals, we have a hyper-geometric distribution and

an associated p-value of ≈ 0.16
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Minimal p-value and testable hypothesis

Before looking at the data, we can compute the minimal possible p-value.

Because we have integer counts, it is not zero. The minimal p-value is

obtained with this distribution of the data.

Variable Favors soccer Favors rugby Rows totals

Comes from the south 4 6 10

Comes from the north 10 0 10

Cols Totals 14 6 20

The minimal p-value is ≈ 0.11
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Tarone’s trick

We want to test N hypotheses h ∈ H. Tarone’s trick relies on computing,

for various values of k ∈ [1, . . . ,N], m(k) =
∣∣{h ∈ H|p∗(h) ≤ α

k }
∣∣. Then

we identify k0 = mink{k ∈ [1, . . . ,N]|m(k) ≤ k}.

We can then define R = {h ∈ H|p∗(h) ≤ α
k0
} and we only test the

hypothesis in R. We can then control the family-wise error rate (FWER)

at a level α by rejecting each test h ∈ R iif p(h) ≤ α
k0

.

This has been used for regular GWAS by Llinares-López et al. [2015].
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The minimal p-value is strictly increasing (after some point)

If we name x =
∑n

i=1 1{Yi = 1}, we have
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In general, for x > x ′ ≥ max(n1, n2), p∗(x) > p∗(x ′). So, if a subgraph is

not testable, any subgraph that contains it is not testable either. We can

use Frequent Subgraph Mining (FSM) algorithms to explore the De

Bruijn graph.
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Accounting for population

structure



K-means on node matrix

We use the node absence / presence matrix

 0 1 ...

1 1 ...

... ... ...

 of n samples

by m nodes to run the k-mean algorithm. We can then obtain a

categorical variable ci ∈ {1, . . . ,K} for each sample.
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CMH tests with Tarone’s trick

Updating previous notation, we now have D = {Gi , yi , ci}ni=1 and we

want to test zH ⊥ Y |C . Tarone’s trick works for any test that relies on

the discreteness of the data, including the CMH test [Cochran, 1954,

Mantel and Haenszel, 1959].

However, we loose the increasing property of the initial p-value.
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Defining an envelope

We define p̃∗(H) ≡ minH′⊇H p∗(H′). Then we recover the wanted

property. Papaxanthos et al. [2016] proved that the envelope can be

computed in O(k log k).

We need to modify the FSM algorithm to prune the graph based on the

envelope, instead of the frequency (work in progress).
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metagenome in European women with normal, impaired and diabetic glucose

control. Nature, 498(7452):99–103, 2013. ISSN 00280836. doi:

10.1038/nature12198.

Jun Wang, Junjie Qin, Yingrui Li, Zhiming Cai, Shenghui Li, Jianfeng Zhu, Fan

Zhang, Suisha Liang, Wenwei Zhang, Yuanlin Guan, Dongqian Shen, Yangqing

Peng, Dongya Zhang, Zhuye Jie, Wenxian Wu, Youwen Qin, Wenbin Xue, Junhua

Li, Lingchuan Han, Donghui Lu, Peixian Wu, Yali Dai, Xiaojuan Sun, Zesong Li,

Aifa Tang, Shilong Zhong, Xiaoping Li, Weineng Chen, Ran Xu, Mingbang Wang,

Qiang Feng, Meihua Gong, Jing Yu, Yanyan Zhang, Ming Zhang, Torben Hansen,

Gaston Sanchez, Jeroen Raes, Gwen Falony, Shujiro Okuda, Mathieu Almeida,

Emmanuelle Lechatelier, Pierre Renault, Nicolas Pons, Jean Michel Batto, Zhaoxi

Zhang, Hua Chen, Ruifu Yang, Weimou Zheng, Songgang Li, Huanming Yang,

S. Dusko Ehrlich, Rasmus Nielsen, Oluf Pedersen, Karsten Kristiansen, and Jian

Wang. A metagenome-wide association study of gut microbiota in type 2 diabetes.

Nature, 490(7418):55–60, 2012. ISSN 00280836. doi: 10.1038/nature11450.

16



Acknowledgments

This work has been done in collaboration with Laurent Jacob at

LBBE/CNRS, Universit de Lyon. Inputs were provided by Fanny

Perraudeau, Joe McMurdie and Christian Sieber at Whole Biome, and

Sandrine Dudoit at UC Berkeley.

17



Appendix



Musing on multiple testings

We note R = {h ∈ H|p∗(h) ≤ α
k0
}

• We proved that, if |R| ≤
√
n, then Tarone’s trick with FWER is less

conservative than the FDR, with the same α level.

• As Gilbert [2005] pointed out, controlling the FDR on R controls

the FDR on H.

• Actually, there are no reason to use the same test to define R and

then to test on R. We still control the FDR (or the FWER) on H.
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Datasets

• Single species from the original publication: 282 bacterial genomes

of Pseudomonas aeruginosa along with their drug (amikacin)

resistance/sensitivity phenotype. Many results have been validated

in the lab.

• Simulated metagenomics data from CAMI [Sczyrba et al., 2017].

The contigs are known, the genes will be revealed at some point.
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Datasets (Continued)

• Simulate data from real datasets. Randomly add contigs from a

hold-hover sample with probability π = π(yi ).

• Real diabetes datasets from Karlsson et al. [2013], Wang et al.

[2012]. Many results are known.
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