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Motivation



Computational pan-genomics

Genome as a single string

(from The Computational Pan-Genomics Consortium, 2016)

Ill-suited approximation for current sequencing data:

• Discarding accessory genes, rearrangements and repeated

regions.

• Problem for: microbes, viruses, metagenomes, human

diseases, anything hard to assemble.

• Was really always a problem, even for simpler situations.

3/17



Computational pan-genomics

Genome as a single string

(from The Computational Pan-Genomics Consortium, 2016)

Ill-suited approximation for current sequencing data:

• Discarding accessory genes, rearrangements and repeated

regions.

• Problem for: microbes, viruses, metagenomes, human

diseases, anything hard to assemble.

• Was really always a problem, even for simpler situations.

3/17



Existing GWAS methods



Method overview in human

Figure 1: [Visscher et al., 2017]
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In bacterial genomes and metagenomes
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k-mers are easy to analyse but hard to interpret
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Mapping to a reference is too dependent on its quality

• Easy to interpret

• Good for validation

• Dependent on

good reference genomes

• Hard to analyze SNPs,

genes, species at once.
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DBGWAS



Constructing a De Bruijn Graph

TTCGC 

TTCGA 
TTCG 

 TCGC 

TCGA 

TTCGCTAGTA 

TTCGATAGTA 
TAGT 

CTAG GCTA CGCT 

ATAG GATA CGAT 
AGTA TTCG 

TCGC 

TCGA 

TAGT 

CTAG GCTA CGCT 

ATAG GATA CGAT 
AGTA TTCG 

TCGC 

TCGA 
TAGTA TTCG 

TCGCTAG 

TCGATAG 

A) Fork pattern 

B) Bubble pattern 

C) Compacted graph 

• Widely used in assembly and variant calling methods.

• A node is called an unitig
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De Bruijn Graphs eliminates redundancy

• No change in information: set of unique presence/absence

profiles is the same.

• Easier to interpret: Compaction eliminates local redundancy:

fewer, longer sequences. of each unitig.
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Full workflow

AGPL3 software, Jaillard et al., PLoS Genetics 2018 10/17



Example: whole plasmid inclusion for P. aeruginosa amikacin

resistance

• Linear subgraph

with mostly red nodes:

presence of the entire sequence

is associated with resistance.

• Neighborhoods

connect top kmers separated

by less significant ones.

• Maps to pHS87b

plasmid recently described

as being involved in resistance.
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Improvements to DBGWAS



Current limitations

• Need to select a parameter to define the neighborhood (a).

• Low power to detect complex structures, as in (b).

(a) (b)

[Jaillard et al., 2018]

12/17



Approach

Instead of testing at the node level and trying to combine in a

heuristic manner, test all possible subgraphs.
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Using Tarone’s trick

Testing all subgraphs in a naive manner is not possible. The

number of tests to run is much too large

1. to be computationally tractable.

2. to give reasonable power to any test.

Using Tarone’s trick Tarone [1990], we can solve both issues
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Greg and Susie

Greg

is a recruiter. Greg throws away

half of the CVs without looking

at them. Greg is a bad recruiter.

Susie is a statistician.

Susie throws away half of

the hypotheses without looking at

them. Is Susie a bad statistician?

Not

if you consider FWER and FDR.

Of course, we do loose power.
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Tarone’s trick increases the rejection threshold

For discrete tests, the smallest possible p-value, or minimal p-value

is not zero. So you can discard some hypotheses without testing

them. This has been used for regular GWAS by Llinares-López

et al. [2015], which proposed this FAIS algorithm.
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Conclusions

• We build a common DBG from the k-mer decompositiom.

• We define the features as the nodes of the graph.

• We tests them using a mixed-effect model.

• Improvements: define more complex features as subgraphs of

the DBG.
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Thank you for listening

Questions
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