

Finding all Significant Closed Connected Subgraphs at Scale HECTOR ROUX DE BÉZIEUX^{1,2}, FANNY PERRAUDEAU², ARNAUD MARY³, SANDRINE DUDOIT¹, LAURENT JACOB³ ¹UC Berkeley, ²Pendulum Therapeutics, Inc., ³Université de Lyon

BIOLOGICAL MOTIVATION

samples with binary phenotypes 0/1, (resistance to antibiotic), and a set of genomics sequences for each sample. Testing for association between all k-mers and the phenotype is redundant and hard to interpret.

Figure 1: Example of setting: one strain is sensitive to antibiotic, one is not. Genetic sequences are sequenced for each strain and lead to the table of presence-absence for each k-mer for the two strains, with k = 4.

Compacted De Bruijn Graphs (DBGs) allow for non-redundant compressed format without loss of information.

Figure 2: Compaction of the k-mers into a De Bruijn Graph.

However, testing only individual nodes makes results hard to interpret since genetic features such as genes can be represented by several nodes.

TTCG TCGTA	TCGCTCG	TCGATCG
1	1	0
1	0	1

Figure 3: Table of presence-absence for each unitig for the two strains. No information is lost compared to the k-mer table but this is described with fewer sequences.

Figure 4: Each dark red node is significantly with associated the phenotype.

A typical bacterial genome graph contains millions of nodes, the subgraph above is just a small part representing a gene. That sequence is not linear because of small mutations along that gene between samples.

METHODS

• Consider all closed connected subgraphs (CCS) of the DBG.

- **Tarone's idea of testability** [1]: for a discrete distribution, the smallest possible p-value p^* can be strictly bigger than 0. If it is higher than the rejection threshold, the hypothesis is not-testable and can be discarded, decreasing the number of hypotheses being tested. It is therefore possible to control the Family-Wise Error Rate at the same nominal level while strictly increasing the power.
- Enumerate all CCS by building an appropriate tree structure rooted on \emptyset . We define a tree structure from a Children function. Instead of enumerating all connected subgraphs and discarding the non-closed ones, we directly enumerate the CCS using a double alphabetical order on samples and nodes. This leads to a faster enumeration.
- Building a tree structure that can be pruned using testability The Children needs to verify the following property: for all CCS $\mathcal{S}, \mathcal{S}', \mathcal{S}' \in \text{Children}(\mathcal{S}) \implies p^*(\mathcal{S}) \leq p^*(\mathcal{S}').$

ALGORITHM

Algorithm 1 CALDERA: List all significant closed connected subgraphs [2]

- 1: ▷ Find all testable CCS
- 2: **procedure** ENUM(S, Testables, k_0)
- for $\mathcal{S}' \in \text{Children}(\mathcal{S})$ do 3:
- if $p^{\star}(\mathcal{S}') \leq \alpha/k_0$ then
- Add S' to Testables
 - $k_0 \leftarrow k_0 + 1$
- Update Testables given new α/k_0 7:
- Enum(\mathcal{S}' , Testables, k_0) 8:
- end if 9:
- end for 10:
- return Testables 11:
- 12: end procedure
- 13: Testables \leftarrow Enum(\emptyset , \emptyset , 1)
- 14: \triangleright Actually test them
- 15: Sols $\leftarrow \emptyset$
- 16: **for** $S \in$ Testables **do**
- If $p(S) < \alpha/k_0$, add S to Sols 17:
- 18: end for

MAIN REFERENCES

- R. E. Tarone. A Modified Bonferroni Method for Discrete Data. Biometrics, 1990. doi 10.2307/2531456
- [2] Felipe Llinares-López, Dominik G. Grimm, Dean A. Bodenham, Udo Gieraths, Mahito Sugiyama, Beth Rowan, and Karsten Borgwardt. Genome-wide detection of intervals of genetic heterogeneity associated with complex traits. Bioinformatics, 2015. doi: 10.1093/bioinformatics/btv263.
- [3] Jun Sese, Aika Terada, Yuki Saito, and Koji Tsuda. Statistically significant subgraphs for genome-wide association study. SDM, 47:1–7, 2014.
- [4] Shin Ichi Minato, Takeaki Uno, Koji Tsuda, Aika Terada, and Jun Sese. A fast method of statistical assessment for combinatorial hypotheses based on frequent itemset enumeration. In *Lecture Notes in Computer Science*, 2014. doi: 10.1007/978-3-662-44851-9_27.
- [5] Magali Jaillard, Leandro Lima, Maud Tournoud, Pierre Mahé, Alex van Belkum, Vincent Lacroix, and Laurent Jacob. A fast and agnostic method for bacterial genome-wide association studies: Bridging the gap between k-mers and genetic events. PLoS genetics, 2018. doi: 10.1371/journal.pgen.1007758.

TOY EXAMPLE

Figure 5: Toy example with 3 nodes and 12 samples. Each node has a vector of presence-absence of samples.

Figure 6: CALDERA defines a reduction on the CCS that can be inverted to explore all CCS starting from \emptyset .

Sub

DISCUSSION

The method scales to bacterial genome samples (2 million nodes DBG) but not to metagenome samples (100 million nodes DBG). Pre-processing of the data, including filtering of low-frequencies *k*-mers might help.

Breadth-First Search. Since $\{v_3\}$ is not testable once we finish exploring the first stage (step 3), we can prune the branch: we do not explore its children $\{v_1, v_3\}, \{v_2, v_3\}$ and $\{v_1, v_2, v_3\}$.

ograph	Testables	k_0	$lpha/k_0$
$\{v_3\}$	$\{\{v_3\}\}$	1	.15
$\{v_2\}$	$\{\{v_3\},\{v_2\}\}$	2	.075
$\{v_1\}$	$\{\{v_2\},\{v_1\}\}$	3	.05
$_{1}, v_{2}$ }	$\{\{v_2\},\{v_1\},\{v_1,v_2\}\}$	3	.05

RESULTS ON SIMULATIONS

Figure 7: Runtimes for increasing graph sizes against state-of-the-art:COIN [3] and LAMP2 [4]

RESULTS ON REAL DATA

n = 280 Pseudomonas Aeruginosa genomes from Jaillard et al. [5], along with their amikacin resistance phenotype. CALDERA runs in ~ 5 hours while COIN+LAMP2 is only at 10% of the exploration after 9 days. The top two hits match the only genes genes linked to resistance phenotype for those strains.

Figure 8: Subgraph with lowest p-value, matches to the AAC(6') gene

Figure 9: Subgraph with second lowest p-value, matches to the pHS87b plasmid