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BIOLOGICAL MOTIVATION
n samples with binary phenotypes 0/1,
(resistance to antibiotic), and a set of genomics
sequences for each sample. Testing for
association between all k-mers and the phenotype
is redundant and hard to interpret.

Figure 1: Example of setting: one strain is sensitive to
antibiotic, one is not. Genetic sequences are sequenced
for each strain and lead to the table of presence-absence
for each k-mer for the two strains, with k = 4.

Compacted De Bruijn Graphs (DBGs) allow for
non-redundant compressed format without loss
of information.

Figure 2: Compaction of the k-mers into a De Bruijn
Graph.

However, testing only individual nodes makes re-
sults hard to interpret since genetic features such
as genes can be represented by several nodes.

Figure 3: Table of
presence-absence for
each unitig for the two
strains. No information
is lost compared to the
k-mer table but this is
described with fewer
sequences.

Figure 4: Each dark
red node is significantly
associated with the
phenotype.

A typical bacterial genome graph contains
millions of nodes, the subgraph above is just a
small part representing a gene. That sequence is
not linear because of small mutations along that
gene between samples.

METHODS
• Consider all closed connected subgraphs (CCS) of the DBG.
• Tarone’s idea of testability [1]: for a discrete distribution, the smallest possible p-value p? can be

strictly bigger than 0. If it is higher than the rejection threshold, the hypothesis is not-testable and
can be discarded, decreasing the number of hypotheses being tested. It is therefore possible to
control the Family-Wise Error Rate at the same nominal level while strictly increasing the power.

• Enumerate all CCS by building an appropriate tree structure rooted on ∅. We define a tree
structure from a Children function. Instead of enumerating all connected subgraphs and
discarding the non-closed ones, we directly enumerate the CCS using a double alphabetical order
on samples and nodes. This leads to a faster enumeration.

• Building a tree structure that can be pruned using testability The Children needs to verify the
following property: for all CCS S,S ′,S ′ ∈ Children(S) =⇒ p?(S) ≤ p?(S ′).

ALGORITHM

Algorithm 1 CALDERA: List all significant closed
connected subgraphs [2]

1: . Find all testable CCS
2: procedure ENUM(S,Testables, k0)
3: for S ′ ∈ Children(S) do
4: if p?(S ′) ≤ α/k0 then
5: Add S ′ to Testables
6: k0 ← k0 + 1
7: Update Testables given new α/k0
8: Enum(S ′,Testables, k0)
9: end if

10: end for
11: return Testables
12: end procedure
13: Testables← Enum(∅, ∅, 1)
14: . Actually test them
15: Sols← ∅
16: for S ∈ Testables do
17: If p(S) < α/k0, add S to Sols
18: end for

TOY EXAMPLE

Figure 5: Toy example with 3 nodes and 12 samples.
Each node has a vector of presence-absence of samples.

Figure 6: CALDERA defines a reduction on the CCS that
can be inverted to explore all CCS starting from ∅.

Breadth-First Search. Since {v3} is not testable
once we finish exploring the first stage (step 3),
we can prune the branch: we do not explore its
children {v1, v3}, {v2, v3} and {v1, v2, v3}.

Subgraph Testables k0 α/k0
{v3}

{
{v3}

}
1 .15

{v2}
{
{v3}, {v2}

}
2 .075

{v1}
{
{v2}, {v1}

}
3 .05

{v1, v2}
{
{v2}, {v1}, {v1, v2}

}
3 .05

RESULTS ON SIMULATIONS
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Figure 7: Runtimes for increasing graph sizes against
state-of-the-art:COIN [3] and LAMP2 [4]

RESULTS ON REAL DATA
n = 280 Pseudomonas Aeruginosa genomes from
Jaillard et al. [5], along with their amikacin
resistance phenotype. CALDERA runs in ∼ 5
hours while COIN+LAMP2 is only at 10% of the
exploration after 9 days.
The top two hits match the only genes genes
linked to resistance phenotype for those strains.

Figure 8: Subgraph with lowest p-value, matches to the
AAC(6’) gene

Figure 9: Subgraph with second lowest p-value,
matches to the pHS87b plasmid

DISCUSSION
The method scales to bacterial genome samples
(2 million nodes DBG) but not to metagenome
samples (100 million nodes DBG). Pre-processing
of the data, including filtering of low-frequencies
k-mers might help.
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