DailyHRB.Rmd
You can install this pacakge from Github using
if (!"devtools" %in% installed.packages()) { install.pacakges("devtools") } devtools::install_github("HectorRDB/DailyHRB")
Alternatively, you can download it from Github and build it from source.
This package provide two templates that I regularly use. Templates are an RStudio functionality that I find very useful to speed up project creation. To use those templates, install the package then open RStudio.
To create similar files for yourself, the easiest way is to create your own package. Then, create a Rmd file that you want as template and create a struture similar to the int folder of the Github repo.
For the project, it ia bit more complex. It relies on the project.R file in the R folder and some other files in inst. I hope to be able to create a tutorial at some point.
I rely a lot on ggplot2 to quickly plot nice graphs but I don’t like the deaults themes. The one I prefer is the theme_classic but it still needed some improvements. So I build a ggplot2 theme.
p <- ggplot(data.frame(x = 0:10, y = 0:10 + rnorm(11)), aes(x = x, y = y)) + geom_point() p
p + my_theme()
This function loads the packages and install them from CRAN or Bioconductor if needed, using the BiocManager package.
## ggplot2 Biobase
## TRUE TRUE
This function is useful when analyzing micro-array data, RNA-Seq or scRNA-Seq data. It plots the boxplot of 10 (tunable) random columns from the input matrix. It allows to quickly see whether the data is logged and / or normalized when exploring a new dataset.
## 0% 25% 50% 75% 100%
## 0 0 1 2 8
It is a function that I use to clean metadata file, typically from SRA. It removes all columns that only have one unique value, and optionaly all columns that have no value with duplicates.
metaData <- data.frame(SRA = "SRA17CJQ1", ID1 = sample(letters, 12, replace = F), group = c(rep("group1", 4), rep("group2", 4), rep("group3", 4))) metaData$ID2 <- toupper(metaData$ID1) metaData
## SRA ID1 group ID2
## 1 SRA17CJQ1 t group1 T
## 2 SRA17CJQ1 q group1 Q
## 3 SRA17CJQ1 b group1 B
## 4 SRA17CJQ1 h group1 H
## 5 SRA17CJQ1 n group2 N
## 6 SRA17CJQ1 o group2 O
## 7 SRA17CJQ1 e group2 E
## 8 SRA17CJQ1 k group2 K
## 9 SRA17CJQ1 z group3 Z
## 10 SRA17CJQ1 y group3 Y
## 11 SRA17CJQ1 i group3 I
## 12 SRA17CJQ1 m group3 M
clean(metaData)
## ID1 group ID2
## 1 t group1 T
## 2 q group1 Q
## 3 b group1 B
## 4 h group1 H
## 5 n group2 N
## 6 o group2 O
## 7 e group2 E
## 8 k group2 K
## 9 z group3 Z
## 10 y group3 Y
## 11 i group3 I
## 12 m group3 M
clean(metaData, unique = F, keep = "ID1")
## group ID1
## 1 group1 t
## 2 group1 q
## 3 group1 b
## 4 group1 h
## 5 group2 n
## 6 group2 o
## 7 group2 e
## 8 group2 k
## 9 group3 z
## 10 group3 y
## 11 group3 i
## 12 group3 m
Just a shorcut, colors()
is equivalent to RColorBrewer::display.brewer.all()
. Setting print = TRUE will also print the names of all palettes in RColorBrewer.